These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Carbon dioxide--the hydrogen-storage material of the future? Enthaler S. ChemSusChem; 2008; 1(10):801-4. PubMed ID: 18781550 [No Abstract] [Full Text] [Related]
5. Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water. Garron A, Epron F. Water Res; 2005 Aug; 39(13):3073-81. PubMed ID: 15982701 [Abstract] [Full Text] [Related]
9. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage. Himeda Y, Miyazawa S, Hirose T. ChemSusChem; 2011 Apr 18; 4(4):487-93. PubMed ID: 21271682 [Abstract] [Full Text] [Related]
10. CO(2) fixation through hydrogenation by chemical or enzymatic methods. Beller M, Bornscheuer UT. Angew Chem Int Ed Engl; 2014 Apr 25; 53(18):4527-8. PubMed ID: 24706361 [Abstract] [Full Text] [Related]
11. Hydrogen from formic acid through its selective disproportionation over sodium germanate--a non-transition-metal catalysis system. Amos RI, Heinroth F, Chan B, Zheng S, Haynes BS, Easton CJ, Masters AF, Radom L, Maschmeyer T. Angew Chem Int Ed Engl; 2014 Oct 13; 53(42):11275-9. PubMed ID: 25169798 [Abstract] [Full Text] [Related]
12. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. Agarwal AS, Zhai Y, Hill D, Sridhar N. ChemSusChem; 2011 Sep 19; 4(9):1301-10. PubMed ID: 21922681 [Abstract] [Full Text] [Related]
14. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures. Bedard J, Hong DY, Bhan A. Phys Chem Chem Phys; 2013 Aug 07; 15(29):12173-9. PubMed ID: 23703320 [Abstract] [Full Text] [Related]
15. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Loges B, Boddien A, Junge H, Beller M. Angew Chem Int Ed Engl; 2008 Aug 07; 47(21):3962-5. PubMed ID: 18457345 [No Abstract] [Full Text] [Related]
16. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage. Wang F, Xu J, Shao X, Su X, Huang Y, Zhang T. ChemSusChem; 2016 Feb 08; 9(3):246-51. PubMed ID: 26763714 [Abstract] [Full Text] [Related]
17. Efficient PdNi and PdNi@Pd-catalyzed hydrogen generation via formic acid decomposition at room temperature. Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB. Chem Commun (Camb); 2013 Nov 04; 49(85):10028-30. PubMed ID: 24045900 [Abstract] [Full Text] [Related]
18. Towards a practical setup for hydrogen production from formic acid. Sponholz P, Mellmann D, Junge H, Beller M. ChemSusChem; 2013 Jul 04; 6(7):1172-6. PubMed ID: 23757329 [Abstract] [Full Text] [Related]
19. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions. Jiang HL, Singh SK, Yan JM, Zhang XB, Xu Q. ChemSusChem; 2010 May 25; 3(5):541-9. PubMed ID: 20379965 [Abstract] [Full Text] [Related]
20. Hydrogen generation from formic acid decomposition by ruthenium carbonyl complexes. Tetraruthenium dodecacarbonyl tetrahydride as an active intermediate. Czaun M, Goeppert A, May R, Haiges R, Prakash GK, Olah GA. ChemSusChem; 2011 Sep 19; 4(9):1241-8. PubMed ID: 21404444 [Abstract] [Full Text] [Related] Page: [Next] [New Search]