These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Insights into a mutation-assisted lateral drug escape mechanism from the HIV-1 protease active site. Sadiq SK, Wan S, Coveney PV. Biochemistry; 2007 Dec 25; 46(51):14865-77. PubMed ID: 18052195 [Abstract] [Full Text] [Related]
7. Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases. Tóth G, Borics A. Biochemistry; 2006 May 30; 45(21):6606-14. PubMed ID: 16716071 [Abstract] [Full Text] [Related]
8. Explicit solvent dynamics and energetics of HIV-1 protease flap opening and closing. Sadiq SK, De Fabritiis G. Proteins; 2010 Nov 01; 78(14):2873-85. PubMed ID: 20715057 [Abstract] [Full Text] [Related]
9. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations. Kurt N, Scott WR, Schiffer CA, Haliloglu T. Proteins; 2003 May 15; 51(3):409-22. PubMed ID: 12696052 [Abstract] [Full Text] [Related]
12. HIV-1 protease flaps spontaneously close to the correct structure in simulations following manual placement of an inhibitor into the open state. Hornak V, Okur A, Rizzo RC, Simmerling C. J Am Chem Soc; 2006 Mar 08; 128(9):2812-3. PubMed ID: 16506755 [Abstract] [Full Text] [Related]
14. Crucial roles of the subnanosecond local dynamics of the flap tips in the global conformational changes of HIV-1 protease. Li D, Ji B, Hwang K, Huang Y. J Phys Chem B; 2010 Mar 04; 114(8):3060-9. PubMed ID: 20143801 [Abstract] [Full Text] [Related]
16. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations. Chang CE, Trylska J, Tozzini V, McCammon JA. Chem Biol Drug Des; 2007 Jan 04; 69(1):5-13. PubMed ID: 17313452 [Abstract] [Full Text] [Related]
17. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. Durdagi S, Mavromoustakos T, Chronakis N, Papadopoulos MG. Bioorg Med Chem; 2008 Dec 01; 16(23):9957-74. PubMed ID: 18996019 [Abstract] [Full Text] [Related]
18. Unexpected novel binding mode of pyrrolidine-based aspartyl protease inhibitors: design, synthesis and crystal structure in complex with HIV protease. Specker E, Böttcher J, Brass S, Heine A, Lilie H, Schoop A, Müller G, Griebenow N, Klebe G. ChemMedChem; 2006 Jan 01; 1(1):106-17. PubMed ID: 16892342 [Abstract] [Full Text] [Related]
19. Role of structural water molecule in HIV protease-inhibitor complexes: a QM/MM study. Suresh CH, Vargheese AM, Vijayalakshmi KP, Mohan N, Koga N. J Comput Chem; 2008 Aug 01; 29(11):1840-9. PubMed ID: 18351589 [Abstract] [Full Text] [Related]
20. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design. Perryman AL, Lin JH, McCammon JA. Biopolymers; 2006 Jun 15; 82(3):272-84. PubMed ID: 16508951 [Abstract] [Full Text] [Related] Page: [Next] [New Search]