These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


271 related items for PubMed ID: 18786360

  • 1. Large-scale movement within the voltage-sensor paddle of a potassium channel-support for a helical-screw motion.
    Broomand A, Elinder F.
    Neuron; 2008 Sep 11; 59(5):770-7. PubMed ID: 18786360
    [Abstract] [Full Text] [Related]

  • 2. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C, Morera FJ, Rosenmann E, Alvarez O, Latorre R.
    Proc Natl Acad Sci U S A; 2005 Apr 05; 102(14):5020-5. PubMed ID: 15774578
    [Abstract] [Full Text] [Related]

  • 3. Double gaps along Shaker S4 demonstrate omega currents at three different closed states.
    Gamal El-Din TM, Heldstab H, Lehmann C, Greeff NG.
    Channels (Austin); 2010 Apr 05; 4(2):93-100. PubMed ID: 20009570
    [Abstract] [Full Text] [Related]

  • 4. Focused electric field across the voltage sensor of potassium channels.
    Ahern CA, Horn R.
    Neuron; 2005 Oct 06; 48(1):25-9. PubMed ID: 16202706
    [Abstract] [Full Text] [Related]

  • 5. Molecular mechanism of voltage sensor movements in a potassium channel.
    Elliott DJ, Neale EJ, Aziz Q, Dunham JP, Munsey TS, Hunter M, Sivaprasadarao A.
    EMBO J; 2004 Dec 08; 23(24):4717-26. PubMed ID: 15565171
    [Abstract] [Full Text] [Related]

  • 6. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.
    Elliott DJ, Neale EJ, Munsey TS, Bannister JP, Sivaprasadarao A.
    Mol Membr Biol; 2012 Dec 08; 29(8):321-32. PubMed ID: 22881396
    [Abstract] [Full Text] [Related]

  • 7. Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.
    Zhang L, Sato Y, Hessa T, von Heijne G, Lee JK, Kodama I, Sakaguchi M, Uozumi N.
    Proc Natl Acad Sci U S A; 2007 May 15; 104(20):8263-8. PubMed ID: 17488813
    [Abstract] [Full Text] [Related]

  • 8. Structure, function, and modification of the voltage sensor in voltage-gated ion channels.
    Börjesson SI, Elinder F.
    Cell Biochem Biophys; 2008 May 15; 52(3):149-74. PubMed ID: 18989792
    [Abstract] [Full Text] [Related]

  • 9. A direct demonstration of closed-state inactivation of K+ channels at low pH.
    Claydon TW, Vaid M, Rezazadeh S, Kwan DC, Kehl SJ, Fedida D.
    J Gen Physiol; 2007 May 15; 129(5):437-55. PubMed ID: 17470663
    [Abstract] [Full Text] [Related]

  • 10. A proton pore in a potassium channel voltage sensor reveals a focused electric field.
    Starace DM, Bezanilla F.
    Nature; 2004 Feb 05; 427(6974):548-53. PubMed ID: 14765197
    [Abstract] [Full Text] [Related]

  • 11. On the opening of voltage-gated ion channels.
    Elinder F, Nilsson J, Arhem P.
    Physiol Behav; 2007 Sep 10; 92(1-2):1-7. PubMed ID: 17585963
    [Abstract] [Full Text] [Related]

  • 12. Non-linear intramolecular interactions and voltage sensitivity of a KV1 family potassium channel from Polyorchis penicillatus (Eschscholtz 1829).
    Klassen TL, O'Mara ML, Redstone M, Spencer AN, Gallin WJ.
    J Exp Biol; 2008 Nov 10; 211(Pt 21):3442-53. PubMed ID: 18931317
    [Abstract] [Full Text] [Related]

  • 13. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages.
    Männikkö R, Elinder F, Larsson HP.
    Nature; 2002 Oct 24; 419(6909):837-41. PubMed ID: 12397358
    [Abstract] [Full Text] [Related]

  • 14. Voltage-sensing residues in the S4 region of a mammalian K+ channel.
    Liman ER, Hess P, Weaver F, Koren G.
    Nature; 1991 Oct 24; 353(6346):752-6. PubMed ID: 1944534
    [Abstract] [Full Text] [Related]

  • 15. Structural organization of the voltage sensor in voltage-dependent potassium channels.
    Papazian DM, Silverman WR, Lin MC, Tiwari-Woodruff SK, Tang CY.
    Novartis Found Symp; 2002 Oct 24; 245():178-90; discussion 190-2, 261-4. PubMed ID: 12027007
    [Abstract] [Full Text] [Related]

  • 16. Solution structure of the HsapBK K+ channel voltage-sensor paddle sequence.
    Unnerståle S, Lind J, Papadopoulos E, Mäler L.
    Biochemistry; 2009 Jun 30; 48(25):5813-21. PubMed ID: 19456106
    [Abstract] [Full Text] [Related]

  • 17. Effect of cysteine substitutions on the topology of the S4 segment of the Shaker potassium channel: implications for molecular models of gating.
    Wang MH, Yusaf SP, Elliott DJ, Wray D, Sivaprasadarao A.
    J Physiol; 1999 Dec 01; 521 Pt 2(Pt 2):315-26. PubMed ID: 10581304
    [Abstract] [Full Text] [Related]

  • 18. The principle of gating charge movement in a voltage-dependent K+ channel.
    Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R.
    Nature; 2003 May 01; 423(6935):42-8. PubMed ID: 12721619
    [Abstract] [Full Text] [Related]

  • 19. Role of charged residues in the S1-S4 voltage sensor of BK channels.
    Ma Z, Lou XJ, Horrigan FT.
    J Gen Physiol; 2006 Mar 01; 127(3):309-28. PubMed ID: 16505150
    [Abstract] [Full Text] [Related]

  • 20. Computer simulation of the KvAP voltage-gated potassium channel: steered molecular dynamics of the voltage sensor.
    Monticelli L, Robertson KM, MacCallum JL, Tieleman DP.
    FEBS Lett; 2004 Apr 30; 564(3):325-32. PubMed ID: 15111117
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.