These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


289 related items for PubMed ID: 18790029

  • 1. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study.
    Gaihre B, Khil MS, Lee DR, Kim HY.
    Int J Pharm; 2009 Jan 05; 365(1-2):180-9. PubMed ID: 18790029
    [Abstract] [Full Text] [Related]

  • 2. In vitro anticancer activity of doxorubicin-loaded gelatin-coated magnetic iron oxide nanoparticles.
    Gaihre B, Khil MS, Kim HY.
    J Microencapsul; 2011 Jan 05; 28(4):286-93. PubMed ID: 21545319
    [Abstract] [Full Text] [Related]

  • 3. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.
    Purushotham S, Chang PE, Rumpel H, Kee IH, Ng RT, Chow PK, Tan CK, Ramanujan RV.
    Nanotechnology; 2009 Jul 29; 20(30):305101. PubMed ID: 19581698
    [Abstract] [Full Text] [Related]

  • 4. In-vitro cytotoxicity and cell uptake study of gelatin-coated magnetic iron oxide nanoparticles.
    Gaihre B, Hee Lee Y, Khil MS, Yi HK, Kim HY.
    J Microencapsul; 2011 Jul 29; 28(4):240-7. PubMed ID: 21545315
    [Abstract] [Full Text] [Related]

  • 5. General and cardiac toxicity of doxorubicin-loaded gelatin nanoparticles.
    Leo E, Arletti R, Forni F, Cameroni R.
    Farmaco; 1997 Jul 29; 52(6-7):385-8. PubMed ID: 9372590
    [Abstract] [Full Text] [Related]

  • 6. Preparation and characterization of modified lipid nanoparticles for doxorubicin controlled release.
    Ying XY, Du YZ, Chen WW, Yuan H, Hu FQ.
    Pharmazie; 2008 Dec 29; 63(12):878-82. PubMed ID: 19177903
    [Abstract] [Full Text] [Related]

  • 7. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting.
    Gautier J, Munnier E, Paillard A, Hervé K, Douziech-Eyrolles L, Soucé M, Dubois P, Chourpa I.
    Int J Pharm; 2012 Feb 14; 423(1):16-25. PubMed ID: 21703340
    [Abstract] [Full Text] [Related]

  • 8. Transglutaminase: new insights into gelatin nanoparticle cross-linking.
    Fuchs S, Kutscher M, Hertel T, Winter G, Pietzsch M, Coester C.
    J Microencapsul; 2010 Feb 14; 27(8):747-54. PubMed ID: 21034367
    [Abstract] [Full Text] [Related]

  • 9. Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein.
    Cai C, Bakowsky U, Rytting E, Schaper AK, Kissel T.
    Eur J Pharm Biopharm; 2008 May 14; 69(1):31-42. PubMed ID: 18023160
    [Abstract] [Full Text] [Related]

  • 10. Novel method of doxorubicin-SPION reversible association for magnetic drug targeting.
    Munnier E, Cohen-Jonathan S, Linassier C, Douziech-Eyrolles L, Marchais H, Soucé M, Hervé K, Dubois P, Chourpa I.
    Int J Pharm; 2008 Nov 03; 363(1-2):170-6. PubMed ID: 18687392
    [Abstract] [Full Text] [Related]

  • 11. Iron oxide nanoparticles for sustained delivery of anticancer agents.
    Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V.
    Mol Pharm; 2005 Nov 03; 2(3):194-205. PubMed ID: 15934780
    [Abstract] [Full Text] [Related]

  • 12. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery.
    Zou Z, He D, He X, Wang K, Yang X, Qing Z, Zhou Q.
    Langmuir; 2013 Oct 15; 29(41):12804-10. PubMed ID: 24073830
    [Abstract] [Full Text] [Related]

  • 13. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery.
    Ofokansi K, Winter G, Fricker G, Coester C.
    Eur J Pharm Biopharm; 2010 Sep 15; 76(1):1-9. PubMed ID: 20420904
    [Abstract] [Full Text] [Related]

  • 14. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles.
    Saxena A, Sachin K, Bohidar HB, Verma AK.
    Colloids Surf B Biointerfaces; 2005 Sep 25; 45(1):42-8. PubMed ID: 16112559
    [Abstract] [Full Text] [Related]

  • 15. Preparation of magnetic gelatin nanoparticles and investigating the possible use as chemotherapeutic agent.
    Yılmaz H, Sanlıer SH.
    Artif Cells Nanomed Biotechnol; 2013 Apr 25; 41(2):69-77. PubMed ID: 23305120
    [Abstract] [Full Text] [Related]

  • 16. Synthesis and optimization of gelatin nanoparticles using the miniemulsion process.
    Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K.
    Biomacromolecules; 2008 Sep 25; 9(9):2383-9. PubMed ID: 18666795
    [Abstract] [Full Text] [Related]

  • 17. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics.
    Rana S, Gallo A, Srivastava RS, Misra RD.
    Acta Biomater; 2007 Mar 25; 3(2):233-42. PubMed ID: 17224313
    [Abstract] [Full Text] [Related]

  • 18. T lymphocytes as potential therapeutic drug carrier for cancer treatment.
    Steinfeld U, Pauli C, Kaltz N, Bergemann C, Lee HH.
    Int J Pharm; 2006 Mar 27; 311(1-2):229-36. PubMed ID: 16460895
    [Abstract] [Full Text] [Related]

  • 19. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.
    Boguslavsky Y, Margel S.
    J Colloid Interface Sci; 2008 Jan 01; 317(1):101-14. PubMed ID: 17927999
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.