These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 18791205
1. Bone marrow CXCR4 induction by cultivation enhances therapeutic angiogenesis. Shiba Y, Takahashi M, Hata T, Murayama H, Morimoto H, Ise H, Nagasawa T, Ikeda U. Cardiovasc Res; 2009 Jan 01; 81(1):169-77. PubMed ID: 18791205 [Abstract] [Full Text] [Related]
2. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia. Seeger FH, Rasper T, Koyanagi M, Fox H, Zeiher AM, Dimmeler S. Arterioscler Thromb Vasc Biol; 2009 Nov 01; 29(11):1802-9. PubMed ID: 19696399 [Abstract] [Full Text] [Related]
3. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, Sata M, Ichiki T, Takeshita A, Egashira K. Circulation; 2004 May 25; 109(20):2454-61. PubMed ID: 15148275 [Abstract] [Full Text] [Related]
4. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, Nakano M, Fujii N, Nagasawa T, Nakamura T. Arthritis Rheum; 2009 Mar 25; 60(3):813-23. PubMed ID: 19248097 [Abstract] [Full Text] [Related]
5. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Ryu J, Lee CW, Hong KH, Shin JA, Lim SH, Park CS, Shim J, Nam KB, Choi KJ, Kim YH, Han KH. Cardiovasc Res; 2008 May 01; 78(2):333-40. PubMed ID: 18006432 [Abstract] [Full Text] [Related]
6. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, Qu A, DeMuth JP, Davis MG, Proia A, Terjung RL, Peters KG. Cardiovasc Res; 2006 Mar 01; 69(4):925-35. PubMed ID: 16409996 [Abstract] [Full Text] [Related]
7. Increased expression of CXCR4 and integrin alphaM in hypoxia-preconditioned cells contributes to improved cell retention and angiogenic potency. Kubo M, Li TS, Kamota T, Ohshima M, Qin SL, Hamano K. J Cell Physiol; 2009 Aug 01; 220(2):508-14. PubMed ID: 19415696 [Abstract] [Full Text] [Related]
8. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S. Circulation; 2004 Apr 06; 109(13):1615-22. PubMed ID: 15037527 [Abstract] [Full Text] [Related]
9. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Sbaa E, Dewever J, Martinive P, Bouzin C, Frérart F, Balligand JL, Dessy C, Feron O. Circ Res; 2006 May 12; 98(9):1219-27. PubMed ID: 16601228 [Abstract] [Full Text] [Related]
10. Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Guleng B, Tateishi K, Ohta M, Kanai F, Jazag A, Ijichi H, Tanaka Y, Washida M, Morikane K, Fukushima Y, Yamori T, Tsuruo T, Kawabe T, Miyagishi M, Taira K, Sata M, Omata M. Cancer Res; 2005 Jul 01; 65(13):5864-71. PubMed ID: 15994964 [Abstract] [Full Text] [Related]
11. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-kappaB and JNK/AP-1 pathways. Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, Corbioli S, Vinante F, Krampera M, Palmieri M, Scarpa A, Ariola C, Foà R, Pizzolo G. Haematologica; 2008 Apr 01; 93(4):524-32. PubMed ID: 18322253 [Abstract] [Full Text] [Related]
12. [Effect of chemokine stromal cell derived factor-1 and its receptor CXCR4 on the peritoneal carcinometastasis of gastric cancer]. Ding YL, Zhang JL, Tang SF, Fu QY, Li ZT. Zhonghua Yi Xue Za Zhi; 2008 Jan 15; 88(3):202-5. PubMed ID: 18361822 [Abstract] [Full Text] [Related]
13. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, Urbich C, Spyridopoulos I, Chun J, Brinkmann V, Keul P, Levkau B, Zeiher AM, Dimmeler S, Haendeler J. Arterioscler Thromb Vasc Biol; 2007 Feb 15; 27(2):275-82. PubMed ID: 17158356 [Abstract] [Full Text] [Related]
14. Vascular endothelial growth factor-C derived from CD11b+ cells induces therapeutic improvements in a murine model of hind limb ischemia. Kuwahara G, Nishinakamura H, Kojima D, Tashiro T, Kodama S. J Vasc Surg; 2013 Apr 15; 57(4):1090-9. PubMed ID: 23219511 [Abstract] [Full Text] [Related]
15. Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Zemani F, Silvestre JS, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, Laurendeau I, Galy-Fauroux I, Fischer AM, Boisson-Vidal C. Arterioscler Thromb Vasc Biol; 2008 Apr 15; 28(4):644-50. PubMed ID: 18239152 [Abstract] [Full Text] [Related]
16. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Otsuru S, Tamai K, Yamazaki T, Yoshikawa H, Kaneda Y. Stem Cells; 2008 Jan 15; 26(1):223-34. PubMed ID: 17932420 [Abstract] [Full Text] [Related]
17. Stromal cell-derived factor-1alpha-directed chemoattraction of transiently CXCR4-overexpressing bone marrow stromal cells into functionalized three-dimensional biomimetic scaffolds. Thieme S, Ryser M, Gentsch M, Navratiel K, Brenner S, Stiehler M, Rölfing J, Gelinsky M, Rösen-Wolff A. Tissue Eng Part C Methods; 2009 Dec 15; 15(4):687-96. PubMed ID: 19260802 [Abstract] [Full Text] [Related]
18. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Circ Res; 2007 Oct 26; 101(9):948-56. PubMed ID: 17823371 [Abstract] [Full Text] [Related]
19. The induction of angiogenesis by the implantation of autologous bone marrow cells: a novel and simple therapeutic method. Hamano K, Li TS, Kobayashi T, Tanaka N, Kobayashi S, Matsuzaki M, Esato K. Surgery; 2001 Jul 26; 130(1):44-54. PubMed ID: 11436011 [Abstract] [Full Text] [Related]
20. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis. Kondo K, Shintani S, Shibata R, Murakami H, Murakami R, Imaizumi M, Kitagawa Y, Murohara T. Arterioscler Thromb Vasc Biol; 2009 Jan 26; 29(1):61-6. PubMed ID: 18974384 [Abstract] [Full Text] [Related] Page: [Next] [New Search]