These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


570 related items for PubMed ID: 18793694

  • 21. Persisting in vitro actin motility at nanomolar adenosine triphosphate levels: comparison of skeletal and cardiac myosins.
    Kellermayer MS, Hinds TR, Pollack GH.
    Physiol Chem Phys Med NMR; 1995; 27(3):167-78. PubMed ID: 8868577
    [Abstract] [Full Text] [Related]

  • 22. [Molecular mechanism of muscle contraction: the straightening of the bent actomyosin bond].
    Kastrikin NF.
    Mol Biol (Mosk); 1978; 12(5):1017-22. PubMed ID: 739989
    [Abstract] [Full Text] [Related]

  • 23. Scanning electron microscopy of the myosin-coated surface of polystyrene beads in a force-movement assay system for ATP-dependent actin-myosin sliding.
    Takahashi I, Oiwa K, Kawakami T, Tanaka H, Sugi H.
    J Electron Microsc (Tokyo); 1993 Oct; 42(5):334-7. PubMed ID: 8106853
    [Abstract] [Full Text] [Related]

  • 24. Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement.
    Muhlrad A, Peyser YM, Nili M, Ajtai K, Reisler E, Burghardt TP.
    Biophys J; 2003 Feb; 84(2 Pt 1):1047-56. PubMed ID: 12547786
    [Abstract] [Full Text] [Related]

  • 25. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].
    Pronina OE, Copeland O, Marston S, Borovikov IuS.
    Tsitologiia; 2006 Feb; 48(1):9-18. PubMed ID: 16568830
    [Abstract] [Full Text] [Related]

  • 26. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications.
    Sugi H, Chaen S, Akimoto T.
    Int J Mol Sci; 2018 May 04; 19(5):. PubMed ID: 29734671
    [Abstract] [Full Text] [Related]

  • 27. Multiple- and single-molecule analysis of the actomyosin motor by nanometer-piconewton manipulation with a microneedle: unitary steps and forces.
    Ishijima A, Kojima H, Higuchi H, Harada Y, Funatsu T, Yanagida T.
    Biophys J; 1996 Jan 04; 70(1):383-400. PubMed ID: 8770215
    [Abstract] [Full Text] [Related]

  • 28. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.
    Mesentean S, Koppole S, Smith JC, Fischer S.
    J Mol Biol; 2007 Mar 23; 367(2):591-602. PubMed ID: 17275022
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. [Estimating the length of actomyosin cross-bridge contraction].
    Sidorenko NP.
    Biofizika; 1987 Mar 23; 32(3):516-7. PubMed ID: 3620527
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. An ionic-chemical-mechanical model for muscle contraction.
    Manning GS.
    Biopolymers; 2016 Dec 23; 105(12):887-97. PubMed ID: 27603027
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Force and number of myosin motors during muscle shortening and the coupling with the release of the ATP hydrolysis products.
    Caremani M, Melli L, Dolfi M, Lombardi V, Linari M.
    J Physiol; 2015 Aug 01; 593(15):3313-32. PubMed ID: 26041599
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.