These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
542 related items for PubMed ID: 18798691
1. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J. PLoS Biol; 2008 Sep 16; 6(9):e225. PubMed ID: 18798691 [Abstract] [Full Text] [Related]
2. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T. Plant Cell Physiol; 2012 Nov 16; 53(11):1950-64. PubMed ID: 23037003 [Abstract] [Full Text] [Related]
3. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Soy J, Leivar P, González-Schain N, Sentandreu M, Prat S, Quail PH, Monte E. Plant J; 2012 Aug 16; 71(3):390-401. PubMed ID: 22409654 [Abstract] [Full Text] [Related]
6. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling. Sellaro R, Pacín M, Casal JJ. Mol Plant; 2012 May 16; 5(3):619-28. PubMed ID: 22311777 [Abstract] [Full Text] [Related]
8. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T. Plant Cell Physiol; 2011 Aug 16; 52(8):1315-29. PubMed ID: 21666227 [Abstract] [Full Text] [Related]
10. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA. Proc Natl Acad Sci U S A; 2005 Jul 19; 102(29):10387-92. PubMed ID: 16006522 [Abstract] [Full Text] [Related]
11. Measuring Hypocotyl Length in Arabidopsis. Ronald J, Davis SJ. Methods Mol Biol; 2022 Jul 19; 2398():99-106. PubMed ID: 34674171 [Abstract] [Full Text] [Related]
12. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene. Ito S, Kawamura H, Niwa Y, Nakamichi N, Yamashino T, Mizuno T. Plant Cell Physiol; 2009 Feb 19; 50(2):290-303. PubMed ID: 19098071 [Abstract] [Full Text] [Related]
17. Multiple phytohormones influence distinct parameters of the plant circadian clock. Hanano S, Domagalska MA, Nagy F, Davis SJ. Genes Cells; 2006 Dec 19; 11(12):1381-92. PubMed ID: 17121545 [Abstract] [Full Text] [Related]
18. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Perales M, Más P. Plant Cell; 2007 Jul 19; 19(7):2111-23. PubMed ID: 17616736 [Abstract] [Full Text] [Related]
19. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T. Plant Cell Physiol; 2005 May 19; 46(5):686-98. PubMed ID: 15767265 [Abstract] [Full Text] [Related]
20. TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. Ding Z, Millar AJ, Davis AM, Davis SJ. Plant Cell; 2007 May 19; 19(5):1522-36. PubMed ID: 17496120 [Abstract] [Full Text] [Related] Page: [Next] [New Search]