These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


355 related items for PubMed ID: 18799266

  • 1. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater.
    Lee JW, Cha DK, Oh YK, Ko KB, Song JS.
    J Hazard Mater; 2009 May 15; 164(1):67-72. PubMed ID: 18799266
    [Abstract] [Full Text] [Related]

  • 2. Advanced treatment of coking wastewater by coagulation and zero-valent iron processes.
    Lai P, Zhao HZ, Wang C, Ni JR.
    J Hazard Mater; 2007 Aug 17; 147(1-2):232-9. PubMed ID: 17267104
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater.
    Lee JW, Cha DK, Oh YK, Ko KB, Jin SH.
    J Hazard Mater; 2010 Aug 15; 180(1-3):354-60. PubMed ID: 20452724
    [Abstract] [Full Text] [Related]

  • 5. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater.
    Zhang Y, Jing Y, Quan X, Liu Y, Onu P.
    Water Sci Technol; 2011 Aug 15; 63(4):741-6. PubMed ID: 21330722
    [Abstract] [Full Text] [Related]

  • 6. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater.
    Lei CN, Whang LM, Lin HL.
    Water Sci Technol; 2008 Aug 15; 58(5):1001-6. PubMed ID: 18824797
    [Abstract] [Full Text] [Related]

  • 7. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process.
    Lai P, Zhao HZ, Zeng M, Ni JR.
    J Hazard Mater; 2009 Mar 15; 162(2-3):1423-9. PubMed ID: 18639983
    [Abstract] [Full Text] [Related]

  • 8. Removal of EDTA from low pH printed-circuit board wastewater in a fluidized zero valent iron reactor.
    Chen SS, Hsu HD, Lin YJ, Chin PY.
    Water Sci Technol; 2008 Mar 15; 58(3):661-7. PubMed ID: 18725736
    [Abstract] [Full Text] [Related]

  • 9. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY, Chen WH, Shih CJ.
    Water Sci Technol; 2008 Mar 15; 58(10):1947-54. PubMed ID: 19039174
    [Abstract] [Full Text] [Related]

  • 10. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.
    Suarez-Ojeda ME, Guisasola A, Baeza JA, Fabregat A, Stüber F, Fortuny A, Font J, Carrera J.
    Chemosphere; 2007 Feb 15; 66(11):2096-105. PubMed ID: 17095041
    [Abstract] [Full Text] [Related]

  • 11. Effect of H2 on reductive transformation of p-ClNB in a combined ZVI-anaerobic sludge system.
    Zhu L, Lin HZ, Qi JQ, Xu XY, Qi HY.
    Water Res; 2012 Dec 01; 46(19):6291-9. PubMed ID: 23069076
    [Abstract] [Full Text] [Related]

  • 12. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.
    Mohd Nasir N, Teo Ming T, Ahmadun FR, Sobri S.
    Water Sci Technol; 2010 Dec 01; 62(1):42-7. PubMed ID: 20595752
    [Abstract] [Full Text] [Related]

  • 13. Conceptual comparison of pink water treatment technologies: granular activated carbon, anaerobic fluidized bed, and zero-valent iron-Fenton process.
    Oh SY, Cha DK, Chiu PC, Kim BJ.
    Water Sci Technol; 2004 Dec 01; 49(5-6):129-36. PubMed ID: 15137416
    [Abstract] [Full Text] [Related]

  • 14. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment.
    Sirtori C, Zapata A, Oller I, Gernjak W, Agüera A, Malato S.
    Water Res; 2009 Feb 01; 43(3):661-8. PubMed ID: 19046757
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method.
    Kajitvichyanukul P, Suntronvipart N.
    J Hazard Mater; 2006 Nov 16; 138(2):384-91. PubMed ID: 16938387
    [Abstract] [Full Text] [Related]

  • 16. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis.
    Cheng H, Xu W, Liu J, Wang H, He Y, Chen G.
    J Hazard Mater; 2007 Jul 19; 146(1-2):385-92. PubMed ID: 17229523
    [Abstract] [Full Text] [Related]

  • 17. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron.
    Oh SY, Kim HW, Park JM, Park HS, Yoon C.
    J Hazard Mater; 2009 Aug 30; 168(1):346-51. PubMed ID: 19285795
    [Abstract] [Full Text] [Related]

  • 18. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate.
    Wang XJ, Song Y, Mai JS.
    J Hazard Mater; 2008 Dec 30; 160(2-3):344-8. PubMed ID: 18406053
    [Abstract] [Full Text] [Related]

  • 19. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater.
    Fan JH, Ma LM.
    J Hazard Mater; 2009 May 30; 164(2-3):1392-7. PubMed ID: 19019539
    [Abstract] [Full Text] [Related]

  • 20. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.
    Liu Y, Zhang Y, Ni BJ.
    Water Res; 2015 May 15; 75():292-300. PubMed ID: 25867207
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.