These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
811 related items for PubMed ID: 18801205
1. Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study. Nagel M, Sprenger A, Lencer R, Kömpf D, Siebner H, Heide W. BMC Neurosci; 2008 Sep 19; 9():89. PubMed ID: 18801205 [Abstract] [Full Text] [Related]
2. Modulation of antisaccades by transcranial magnetic stimulation of the human frontal eye field. Olk B, Chang E, Kingstone A, Ro T. Cereb Cortex; 2006 Jan 19; 16(1):76-82. PubMed ID: 15843631 [Abstract] [Full Text] [Related]
3. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements. Russo GS, Bruce CJ. J Neurophysiol; 2000 Nov 19; 84(5):2605-21. PubMed ID: 11068002 [Abstract] [Full Text] [Related]
8. The role of the frontal eye fields in oculomotor competition: image-guided TMS enhances contralateral target selection. Bosch SE, Neggers SF, Van der Stigchel S. Cereb Cortex; 2013 Apr 19; 23(4):824-32. PubMed ID: 22455840 [Abstract] [Full Text] [Related]
9. Neural processes associated with antisaccade task performance investigated with event-related FMRI. Ford KA, Goltz HC, Brown MR, Everling S. J Neurophysiol; 2005 Jul 19; 94(1):429-40. PubMed ID: 15728770 [Abstract] [Full Text] [Related]
11. The human frontal oculomotor cortical areas contribute asymmetrically to motor planning in a gap saccade task. van Donkelaar P, Lin Y, Hewlett D. PLoS One; 2009 Sep 30; 4(9):e7278. PubMed ID: 19789706 [Abstract] [Full Text] [Related]
12. TMS over human frontal eye fields disrupts trans-saccadic memory of multiple objects. Prime SL, Vesia M, Crawford JD. Cereb Cortex; 2010 Apr 30; 20(4):759-72. PubMed ID: 19641017 [Abstract] [Full Text] [Related]
14. The location probability effects of saccade reaction times are modulated in the frontal eye fields but not in the supplementary eye field. Liu CL, Tseng P, Chiau HY, Liang WK, Hung DL, Tzeng OJ, Muggleton NG, Juan CH. Cereb Cortex; 2011 Jun 30; 21(6):1416-25. PubMed ID: 21060112 [Abstract] [Full Text] [Related]
15. Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Hanes DP, Thompson KG, Schall JD. Exp Brain Res; 1995 Jun 30; 103(1):85-96. PubMed ID: 7615040 [Abstract] [Full Text] [Related]
16. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR. J Neurophysiol; 1996 Jan 30; 75(1):454-68. PubMed ID: 8822570 [Abstract] [Full Text] [Related]
18. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. Schall JD. J Neurophysiol; 1991 Aug 30; 66(2):559-79. PubMed ID: 1774586 [Abstract] [Full Text] [Related]
19. Distinct control of initiation and metrics of memory-guided saccades and vergence by the FEF: a TMS study. Yang Q, Kapoula Z. PLoS One; 2011 Aug 30; 6(5):e20322. PubMed ID: 21637804 [Abstract] [Full Text] [Related]
20. Role of the posterior parietal cortex in the initiation of saccades and vergence: right/left functional asymmetry. Kapoula Z, Yang Q, Coubard O, Daunys G, Orssaud C. Ann N Y Acad Sci; 2005 Apr 30; 1039():184-97. PubMed ID: 15826973 [Abstract] [Full Text] [Related] Page: [Next] [New Search]