These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


684 related items for PubMed ID: 18803480

  • 21. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.
    Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S.
    Colloids Surf B Biointerfaces; 2012 Dec 01; 100():169-76. PubMed ID: 22766294
    [Abstract] [Full Text] [Related]

  • 22. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S, Xu DP, Liu ZM, Du Y, Wang XK.
    Int J Mol Med; 2016 Aug 01; 38(2):367-80. PubMed ID: 27352815
    [Abstract] [Full Text] [Related]

  • 23. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A.
    J Biomater Appl; 2019 Mar 01; 33(8):1128-1144. PubMed ID: 30651055
    [Abstract] [Full Text] [Related]

  • 24. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI, Bourban PE, Tami AE, Alini M, Eglin D.
    Acta Biomater; 2009 Nov 01; 5(9):3316-27. PubMed ID: 19442765
    [Abstract] [Full Text] [Related]

  • 25. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y, Kawazoe N, Chen G.
    Acta Biomater; 2018 Feb 01; 67():341-353. PubMed ID: 29242161
    [Abstract] [Full Text] [Related]

  • 26. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU.
    J Mech Behav Biomed Mater; 2014 Nov 01; 39():95-110. PubMed ID: 25117379
    [Abstract] [Full Text] [Related]

  • 27. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP, Wang Y.
    Biomaterials; 2011 Feb 01; 32(4):1051-8. PubMed ID: 20980051
    [Abstract] [Full Text] [Related]

  • 28. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration.
    Kim BS, Sung HM, You HK, Lee J.
    J Biosci Bioeng; 2014 Oct 01; 118(4):469-75. PubMed ID: 24768229
    [Abstract] [Full Text] [Related]

  • 29. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M, Gloria A, Coelho J, Bartolo P, Ciurana J.
    Proc Inst Mech Eng H; 2017 Jun 01; 231(6):555-564. PubMed ID: 28056713
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, Wang L.
    Mol Med Rep; 2017 Oct 01; 16(4):5078-5084. PubMed ID: 28849142
    [Abstract] [Full Text] [Related]

  • 32. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering.
    Zhu Y, Zhu R, Ma J, Weng Z, Wang Y, Shi X, Li Y, Yan X, Dong Z, Xu J, Tang C, Jin L.
    Biomed Mater; 2015 Sep 21; 10(5):055009. PubMed ID: 26391576
    [Abstract] [Full Text] [Related]

  • 33. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, Yousefi AM.
    J Biomater Sci Polym Ed; 2014 Sep 21; 25(16):1856-74. PubMed ID: 25178801
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D, Mota C, Gazzarri M, Dinucci D, Gloria A, Myrzabekova M, Ambrosio L, Chiellini F.
    Biomed Microdevices; 2012 Dec 21; 14(6):1115-27. PubMed ID: 22767245
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Repair of critical size bone defects with porous poly(D,L-lactide)/nacre nanocomposite hollow scaffold.
    Xiao WD, Zhong ZM, Tang YZ, Xu ZX, Xu Z, Chen JT.
    Saudi Med J; 2012 Jun 21; 33(6):601-7. PubMed ID: 22729113
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (L-lactide-co-ε-caprolactone) scaffold.
    Akkouch A, Zhang Z, Rouabhia M.
    J Biomater Appl; 2014 Feb 21; 28(6):922-36. PubMed ID: 23640860
    [Abstract] [Full Text] [Related]

  • 40. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H, Su J, Wei J, Kong H, Liu C.
    Acta Biomater; 2009 Jan 21; 5(1):268-78. PubMed ID: 18722167
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 35.