These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


595 related items for PubMed ID: 18804279

  • 1. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y, Park MS, Lee JW, Kim YH, Kim SH, Kim SH.
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [Abstract] [Full Text] [Related]

  • 2. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y, Kim SH, You HJ, Kim SH, Kim YH, Min BG.
    J Biomater Sci Polym Ed; 2008 Dec; 19(8):1073-85. PubMed ID: 18644232
    [Abstract] [Full Text] [Related]

  • 3. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells.
    Jung Y, Kim SH, Kim YH, Kim SH.
    Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251
    [Abstract] [Full Text] [Related]

  • 4. Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation.
    Jung Y, Kim SH, Kim SH, Kim YH, Xie J, Matsuda T, Min BG.
    J Biomater Sci Polym Ed; 2008 Oct; 19(1):61-74. PubMed ID: 18177554
    [Abstract] [Full Text] [Related]

  • 5. The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering.
    Jung Y, Kim SH, Kim YH, Kim SH.
    J Biomater Sci Polym Ed; 2010 Oct; 21(5):581-92. PubMed ID: 20338093
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C, Wang L, Yang Z, Kim G, Chen H, Ge Z.
    J Biomater Sci Polym Ed; 2012 Oct; 23(1-4):405-24. PubMed ID: 21310105
    [Abstract] [Full Text] [Related]

  • 9. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering.
    Jeong SI, Kim SH, Kim YH, Jung Y, Kwon JH, Kim BS, Lee YM.
    J Biomater Sci Polym Ed; 2004 Oct; 15(5):645-60. PubMed ID: 15264665
    [Abstract] [Full Text] [Related]

  • 10. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang D, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X.
    Int J Nanomedicine; 2016 Oct; 11():1483-500. PubMed ID: 27114708
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W, Hu J, He C, Nie W, Feng W, Qiu K, Zhou X, Gao Y, Wang G.
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds.
    Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ.
    Biomaterials; 2005 Apr; 26(12):1405-11. PubMed ID: 15482828
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.