These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 18804534
21. Differential aspects of immune cell infiltration and neurodegeneration in acute and relapse experimental autoimmune encephalomyelitis. Soellner IA, Rabe J, Mauri V, Kaufmann J, Addicks K, Kuerten S. Clin Immunol; 2013 Dec; 149(3):519-29. PubMed ID: 24239839 [Abstract] [Full Text] [Related]
22. Involvement of neuropsin in the pathogenesis of experimental autoimmune encephalomyelitis. Terayama R, Bando Y, Yamada M, Yoshida S. Glia; 2005 Nov 01; 52(2):108-18. PubMed ID: 15920728 [Abstract] [Full Text] [Related]
25. Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Kerlero de Rosbo N, Mendel I, Ben-Nun A. Eur J Immunol; 1995 Apr 01; 25(4):985-93. PubMed ID: 7737302 [Abstract] [Full Text] [Related]
28. Cerebrospinal fluid levels of neurofilament light in chronic experimental autoimmune encephalomyelitis. Norgren N, Edelstam A, Stigbrand T. Brain Res Bull; 2005 Oct 30; 67(4):264-8. PubMed ID: 16182933 [Abstract] [Full Text] [Related]
29. Mechanisms of axonal degeneration in EAE--lessons from CNTF and MHC I knockout mice. Linker RA, Sendtner M, Gold R. J Neurol Sci; 2005 Jun 15; 233(1-2):167-72. PubMed ID: 15949503 [Abstract] [Full Text] [Related]
30. Damage to bulbospinal serotonin-, tyrosine hydroxylase-, and TRH-containing axons occurs early in the development of experimental allergic encephalomyelitis in rats. White SR, Samathanam GK, Bowker RM, Wessendorf MW. J Neurosci Res; 1990 Sep 15; 27(1):89-98. PubMed ID: 1701489 [Abstract] [Full Text] [Related]
32. The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis. Kaushansky N, Eisenstein M, Zilkha-Falb R, Ben-Nun A. Autoimmun Rev; 2010 Feb 15; 9(4):233-6. PubMed ID: 19683076 [Abstract] [Full Text] [Related]
33. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Mun Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC. Brain; 2012 Jun 15; 135(Pt 6):1794-818. PubMed ID: 22544872 [Abstract] [Full Text] [Related]
34. T-cell-mediated disruption of the neuronal microtubule network: correlation with early reversible axonal dysfunction in acute experimental autoimmune encephalomyelitis. Shriver LP, Dittel BN. Am J Pathol; 2006 Sep 15; 169(3):999-1011. PubMed ID: 16936273 [Abstract] [Full Text] [Related]
35. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis. Bando Y, Nomura T, Bochimoto H, Murakami K, Tanaka T, Watanabe T, Yoshida S. Neurochem Int; 2015 Feb 15; 81():16-27. PubMed ID: 25595039 [Abstract] [Full Text] [Related]
36. [Neuronal injury in multiple sclerosis]. Correale J, Meli F, Ysrraelit C. Medicina (B Aires); 2006 Feb 15; 66(5):472-85. PubMed ID: 17137182 [Abstract] [Full Text] [Related]
37. EAE in beta-2 microglobulin-deficient mice: axonal damage is not dependent on MHC-I restricted immune responses. Linker RA, Rott E, Hofstetter HH, Hanke T, Toyka KV, Gold R. Neurobiol Dis; 2005 Feb 15; 19(1-2):218-28. PubMed ID: 15837577 [Abstract] [Full Text] [Related]