These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


299 related items for PubMed ID: 18804640

  • 1. Sensitive and selective detection of aspartic acid and glutamic acid based on polythiophene-gold nanoparticles composite.
    Guan H, Zhou P, Zhou X, He Z.
    Talanta; 2008 Oct 19; 77(1):319-24. PubMed ID: 18804640
    [Abstract] [Full Text] [Related]

  • 2. A water-soluble polythiophene-Au nanoparticle composite for pH sensing.
    Panda BR, Chattopadhyay A.
    J Colloid Interface Sci; 2007 Dec 15; 316(2):962-7. PubMed ID: 17888447
    [Abstract] [Full Text] [Related]

  • 3. Rapid estimation of bacteria by a fluorescent gold nanoparticle-polythiophene composite.
    Panda BR, Singh AK, Ramesh A, Chattopadhyay A.
    Langmuir; 2008 Oct 21; 24(20):11995-2000. PubMed ID: 18816019
    [Abstract] [Full Text] [Related]

  • 4. Reversible assembly and disassembly of gold nanoparticles directed by a zwitterionic polymer.
    Ding Y, Xia XH, Zhai HS.
    Chemistry; 2007 Oct 21; 13(15):4197-202. PubMed ID: 17236228
    [Abstract] [Full Text] [Related]

  • 5. Open bridge-structured gold nanoparticle array for label-free DNA detection.
    Tokonami S, Shiigi H, Nagaoka T.
    Anal Chem; 2008 Nov 01; 80(21):8071-5. PubMed ID: 18837561
    [Abstract] [Full Text] [Related]

  • 6. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS.
    Polavarapu L, Xu QH.
    Langmuir; 2008 Oct 07; 24(19):10608-11. PubMed ID: 18729527
    [Abstract] [Full Text] [Related]

  • 7. Gold nanoparticle-based monitoring of the reduction of oxidized to reduced glutathione.
    He X, Zhong Z, Guo Y, Lv J, Xu J, Zhu M, Li Y, Liu H, Wang S, Zhu Y, Zhu D.
    Langmuir; 2007 Aug 14; 23(17):8815-9. PubMed ID: 17637013
    [Abstract] [Full Text] [Related]

  • 8. Nanotube composites consisting of metal nanoparticles and polythiophene from electropolymerization of terthiophene-functionalized metal (Au, Pd) nanoparticles.
    Umeda R, Awaji H, Nakahodo T, Fujihara H.
    J Am Chem Soc; 2008 Mar 19; 130(11):3240-1. PubMed ID: 18288846
    [No Abstract] [Full Text] [Related]

  • 9. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor.
    Cui H, Wang W, Duan CF, Dong YP, Guo JZ.
    Chemistry; 2007 Mar 19; 13(24):6975-84. PubMed ID: 17539034
    [Abstract] [Full Text] [Related]

  • 10. Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications.
    Shan J, Tenhu H.
    Chem Commun (Camb); 2007 Nov 28; (44):4580-98. PubMed ID: 17989803
    [Abstract] [Full Text] [Related]

  • 11. Electrochemical identification of the property of peripheral nerve fiber based on a biocompatible polymer film via in situ incorporating gold nanoparticles.
    Zhao W, Sun SX, Xu JJ, Chen HY, Cao XJ, Guan XH.
    Anal Chem; 2008 May 15; 80(10):3769-76. PubMed ID: 18363334
    [Abstract] [Full Text] [Related]

  • 12. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes.
    Qi Y, Li L, Li B.
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep 15; 74(1):127-31. PubMed ID: 19523870
    [Abstract] [Full Text] [Related]

  • 13. Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrins over polymers on gold nanoparticles.
    Wu YL, Li J.
    Angew Chem Int Ed Engl; 2009 Sep 15; 48(21):3842-5. PubMed ID: 19378311
    [Abstract] [Full Text] [Related]

  • 14. A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples.
    Lou X, Zhang Y, Qin J, Li Z.
    Chemistry; 2011 Aug 22; 17(35):9691-6. PubMed ID: 21735497
    [Abstract] [Full Text] [Related]

  • 15. Optical ascorbic acid sensor based on the fluorescence quenching of silver nanoparticles.
    Park HW, Alam SM, Lee SH, Karim MM, Wabaidur SM, Kang M, Choi JH.
    Luminescence; 2009 Aug 22; 24(6):367-71. PubMed ID: 19424962
    [Abstract] [Full Text] [Related]

  • 16. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion.
    Huang KW, Yu CJ, Tseng WL.
    Biosens Bioelectron; 2010 Jan 15; 25(5):984-9. PubMed ID: 19782557
    [Abstract] [Full Text] [Related]

  • 17. Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application.
    Andreescu S, Luck LA.
    Anal Biochem; 2008 Apr 15; 375(2):282-90. PubMed ID: 18211816
    [Abstract] [Full Text] [Related]

  • 18. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry.
    Xiao L, Wildgoose GG, Compton RG.
    Anal Chim Acta; 2008 Jul 14; 620(1-2):44-9. PubMed ID: 18558122
    [Abstract] [Full Text] [Related]

  • 19. Reaction of gold nanoparticles with tetracyanoquinoidal molecules. Spectrophotometric determination of the Au0 content of gold nanoparticles.
    Zotti G, Vercelli B, Berlin A.
    Anal Chem; 2008 Feb 01; 80(3):815-8. PubMed ID: 18183962
    [Abstract] [Full Text] [Related]

  • 20. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip.
    Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G.
    Anal Chem; 2009 Feb 15; 81(4):1660-8. PubMed ID: 19159221
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.