These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


526 related items for PubMed ID: 18808174

  • 1. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK, Wright PC.
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [Abstract] [Full Text] [Related]

  • 2. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions.
    Pham TK, Wright PC.
    J Proteome Res; 2008 Feb; 7(2):515-25. PubMed ID: 18171021
    [Abstract] [Full Text] [Related]

  • 3. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.
    Pham TK, Chong PK, Gan CS, Wright PC.
    J Proteome Res; 2006 Dec; 5(12):3411-9. PubMed ID: 17137342
    [Abstract] [Full Text] [Related]

  • 4. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM, Tan Y, Yuan YJ.
    Proteomics; 2009 Dec; 9(24):5471-83. PubMed ID: 19834894
    [Abstract] [Full Text] [Related]

  • 5. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM, Yao SJ, Peng LF, Shimizu K.
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L.
    Biotechnol Bioeng; 2005 Jun 20; 90(6):703-14. PubMed ID: 15812801
    [Abstract] [Full Text] [Related]

  • 8. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae.
    Cheng JS, Ding MZ, Tian HC, Yuan YJ.
    Proteomics; 2009 Oct 20; 9(20):4704-13. PubMed ID: 19743421
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.
    Ding MZ, Tian HC, Cheng JS, Yuan YJ.
    J Biotechnol; 2009 Dec 20; 144(4):279-86. PubMed ID: 19808067
    [Abstract] [Full Text] [Related]

  • 12. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I, Lindsey GG, Karreman R, Orumets K, Koplimaa M, Kevvai K, Paalme T.
    FEMS Yeast Res; 2008 Sep 20; 8(6):829-38. PubMed ID: 18625028
    [Abstract] [Full Text] [Related]

  • 13. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol.
    Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J.
    FEMS Yeast Res; 2005 May 20; 5(8):757-66. PubMed ID: 15851104
    [Abstract] [Full Text] [Related]

  • 14. Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377.
    Kim IS, Moon HY, Yun HS, Jin I.
    J Microbiol; 2006 Oct 20; 44(5):492-501. PubMed ID: 17082742
    [Abstract] [Full Text] [Related]

  • 15. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats.
    Mashego MR, Jansen ML, Vinke JL, van Gulik WM, Heijnen JJ.
    FEMS Yeast Res; 2005 Feb 20; 5(4-5):419-30. PubMed ID: 15691747
    [Abstract] [Full Text] [Related]

  • 16. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae.
    Hou L.
    Appl Biochem Biotechnol; 2010 Feb 20; 160(4):1084-93. PubMed ID: 19214789
    [Abstract] [Full Text] [Related]

  • 17. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture.
    Hjersted JL, Henson MA, Mahadevan R.
    Biotechnol Bioeng; 2007 Aug 01; 97(5):1190-204. PubMed ID: 17243146
    [Abstract] [Full Text] [Related]

  • 18. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation.
    Cheng JS, Qiao B, Yuan YJ.
    Appl Microbiol Biotechnol; 2008 Nov 01; 81(2):327-38. PubMed ID: 18923828
    [Abstract] [Full Text] [Related]

  • 19. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.
    Wang PM, Zheng DQ, Chi XQ, Li O, Qian CD, Liu TZ, Zhang XY, Du FG, Sun PY, Qu AM, Wu XC.
    Bioresour Technol; 2014 Nov 01; 152():371-6. PubMed ID: 24316480
    [Abstract] [Full Text] [Related]

  • 20. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W.
    Biotechnol Bioeng; 2011 Aug 01; 108(8):1776-87. PubMed ID: 21437883
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.