These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 18808187

  • 1. Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method.
    Zeng Y, Wang Z, Whitfield D, Huang X.
    J Org Chem; 2008 Oct 17; 73(20):7952-62. PubMed ID: 18808187
    [Abstract] [Full Text] [Related]

  • 2. Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents.
    Plante OJ, Palmacci ER, Andrade RB, Seeberger PH.
    J Am Chem Soc; 2001 Oct 03; 123(39):9545-54. PubMed ID: 11572674
    [Abstract] [Full Text] [Related]

  • 3. ortho-Methylphenylthioglycosides as glycosyl building blocks for preactivation-based oligosaccharide synthesis.
    Peng P, Xiong DC, Ye XS.
    Carbohydr Res; 2014 Jan 30; 384():1-8. PubMed ID: 24334234
    [Abstract] [Full Text] [Related]

  • 4. Application of the superarmed glycosyl donor to chemoselective oligosaccharide synthesis.
    Mydock LK, Demchenko AV.
    Org Lett; 2008 Jun 05; 10(11):2107-10. PubMed ID: 18447362
    [Abstract] [Full Text] [Related]

  • 5. Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly.
    Yang W, Yang B, Ramadan S, Huang X.
    Beilstein J Org Chem; 2017 Jun 05; 13():2094-2114. PubMed ID: 29062430
    [Abstract] [Full Text] [Related]

  • 6. Thio-arylglycosides with various aglycon para-substituents: a probe for studying chemical glycosylation reactions.
    Li X, Huang L, Hu X, Huang X.
    Org Biomol Chem; 2009 Jan 07; 7(1):117-27. PubMed ID: 19081954
    [Abstract] [Full Text] [Related]

  • 7. "Active-latent" thioglycosyl donors and acceptors in oligosaccharide syntheses.
    Shiao TC, Roy R.
    Top Curr Chem; 2011 Jan 07; 301():69-108. PubMed ID: 21298410
    [Abstract] [Full Text] [Related]

  • 8. One-pot oligosaccharide synthesis exploiting solvent reactivity effects.
    Lahmann M, Oscarson S.
    Org Lett; 2000 Nov 30; 2(24):3881-2. PubMed ID: 11101443
    [Abstract] [Full Text] [Related]

  • 9. Combinatorial synthesis of an oligosaccharide library by using beta-bromoglycoside-mediated iterative glycosylation of selenoglycosides: rapid expansion of molecular diversity with simple building blocks.
    Yamago S, Yamada T, Ito H, Hara O, Mino Y, Yoshida J.
    Chemistry; 2005 Oct 21; 11(21):6159-74. PubMed ID: 16075449
    [Abstract] [Full Text] [Related]

  • 10. Donor Preactivation-Based Glycan Assembly: from Manual to Automated Synthesis.
    Yao W, Ye XS.
    Acc Chem Res; 2024 Jun 04; 57(11):1577-1594. PubMed ID: 38623919
    [Abstract] [Full Text] [Related]

  • 11. Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors.
    Wang Z, Zhou L, El-Boubbou K, Ye XS, Huang X.
    J Org Chem; 2007 Aug 17; 72(17):6409-20. PubMed ID: 17658849
    [Abstract] [Full Text] [Related]

  • 12. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides.
    Hagen B, Ali S, Overkleeft HS, van der Marel GA, Codée JD.
    J Org Chem; 2017 Jan 20; 82(2):848-868. PubMed ID: 28051314
    [Abstract] [Full Text] [Related]

  • 13. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages.
    Hu Y, Yu K, Shi LL, Liu L, Sui JJ, Liu DY, Xiong B, Sun JS.
    J Am Chem Soc; 2017 Sep 13; 139(36):12736-12744. PubMed ID: 28835100
    [Abstract] [Full Text] [Related]

  • 14. Use of ionically tagged glycosyl donors in the synthesis of oligosaccharide libraries.
    Kim EJ, Gray GR.
    Bioorg Med Chem Lett; 2009 Dec 01; 19(23):6679-81. PubMed ID: 19837587
    [Abstract] [Full Text] [Related]

  • 15. How the arming participating moieties can broaden the scope of chemoselective oligosaccharide synthesis by allowing the inverse armed-disarmed approach.
    Smoot JT, Demchenko AV.
    J Org Chem; 2008 Nov 21; 73(22):8838-50. PubMed ID: 18939875
    [Abstract] [Full Text] [Related]

  • 16. Glycosyl 3-Phenyl-4-pentenoates as Versatile Glycosyl Donors: Reactivity and Their Application in One-Pot Oligosaccharide Assemblies.
    Javed, Khanam A, Mandal PK.
    J Org Chem; 2022 May 20; 87(10):6710-6729. PubMed ID: 35522927
    [Abstract] [Full Text] [Related]

  • 17. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.
    Gervay-Hague J.
    Acc Chem Res; 2016 Jan 19; 49(1):35-47. PubMed ID: 26524481
    [Abstract] [Full Text] [Related]

  • 18. Synthesis of oligosaccharides corresponding to Streptococcus pneumoniae type 9 capsular polysaccharide structures.
    Alpe M, Oscarson S.
    Carbohydr Res; 2002 Oct 11; 337(19):1715-22. PubMed ID: 12423949
    [Abstract] [Full Text] [Related]

  • 19. A novel strategy for oligosaccharide synthesis via temporarily deactivated S-thiazolyl glycosides as glycosyl acceptors.
    Pornsuriyasak P, Gangadharmath UB, Rath NP, Demchenko AV.
    Org Lett; 2004 Nov 25; 6(24):4515-8. PubMed ID: 15548064
    [Abstract] [Full Text] [Related]

  • 20. In situ formation of β-glycosyl imidinium triflate from participating thioglycosyl donors: elaboration to disarmed-armed iterative glycosylation.
    Lin YH, Ghosh B, Mong KK.
    Chem Commun (Camb); 2012 Nov 14; 48(88):10910-2. PubMed ID: 23023321
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.