These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
341 related items for PubMed ID: 18816799
1. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA. Proteins; 2009 Apr; 75(1):147-67. PubMed ID: 18816799 [Abstract] [Full Text] [Related]
2. Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures. Mao B, Tejero R, Baker D, Montelione GT. J Am Chem Soc; 2014 Feb 05; 136(5):1893-906. PubMed ID: 24392845 [Abstract] [Full Text] [Related]
3. Comparison of NMR and crystal structures of membrane proteins and computational refinement to improve model quality. Koehler Leman J, D'Avino AR, Bhatnagar Y, Gray JJ. Proteins; 2018 Jan 05; 86(1):57-74. PubMed ID: 29044728 [Abstract] [Full Text] [Related]
4. Refinement of NMR structures using implicit solvent and advanced sampling techniques. Chen J, Im W, Brooks CL. J Am Chem Soc; 2004 Dec 15; 126(49):16038-47. PubMed ID: 15584737 [Abstract] [Full Text] [Related]
5. Improved technologies now routinely provide protein NMR structures useful for molecular replacement. Mao B, Guan R, Montelione GT. Structure; 2011 Jun 08; 19(6):757-66. PubMed ID: 21645849 [Abstract] [Full Text] [Related]
7. Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Garbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein AV, Galzitskaya OV. Proteins; 2005 Jul 01; 60(1):139-47. PubMed ID: 15856480 [Abstract] [Full Text] [Related]
9. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Mueller GA, Choy WY, Yang D, Forman-Kay JD, Venters RA, Kay LE. J Mol Biol; 2000 Jun 30; 300(1):197-212. PubMed ID: 10864509 [Abstract] [Full Text] [Related]
10. Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix. Moriarty NW, Janowski PA, Swails JM, Nguyen H, Richardson JS, Case DA, Adams PD. Acta Crystallogr D Struct Biol; 2020 Jan 01; 76(Pt 1):51-62. PubMed ID: 31909743 [Abstract] [Full Text] [Related]
11. Alternate states of proteins revealed by detailed energy landscape mapping. Tyka MD, Keedy DA, André I, Dimaio F, Song Y, Richardson DC, Richardson JS, Baker D. J Mol Biol; 2011 Jan 14; 405(2):607-18. PubMed ID: 21073878 [Abstract] [Full Text] [Related]
12. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Kuszewski J, Gronenborn AM, Clore GM. Protein Sci; 1996 Jun 14; 5(6):1067-80. PubMed ID: 8762138 [Abstract] [Full Text] [Related]
13. A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. Gabel F, Simon B, Nilges M, Petoukhov M, Svergun D, Sattler M. J Biomol NMR; 2008 Aug 14; 41(4):199-208. PubMed ID: 18670889 [Abstract] [Full Text] [Related]
14. Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water. Xia B, Tsui V, Case DA, Dyson HJ, Wright PE. J Biomol NMR; 2002 Apr 14; 22(4):317-31. PubMed ID: 12018480 [Abstract] [Full Text] [Related]
15. A three-dimensional potential of mean force to improve backbone and sidechain hydrogen bond geometry in Xplor-NIH protein structure determination. Schwieters CD, Bermejo GA, Clore GM. Protein Sci; 2020 Jan 14; 29(1):100-110. PubMed ID: 31613020 [Abstract] [Full Text] [Related]
16. TASSER-based refinement of NMR structures. Lee SY, Zhang Y, Skolnick J. Proteins; 2006 May 15; 63(3):451-6. PubMed ID: 16456861 [Abstract] [Full Text] [Related]
18. NMRe: a web server for NMR protein structure refinement with high-quality structure validation scores. Ryu H, Lim G, Sung BH, Lee J. Bioinformatics; 2016 Feb 15; 32(4):611-3. PubMed ID: 26504145 [Abstract] [Full Text] [Related]
19. How to tackle protein structural data from solution and solid state: An integrated approach. Carlon A, Ravera E, Andrałojć W, Parigi G, Murshudov GN, Luchinat C. Prog Nucl Magn Reson Spectrosc; 2016 Feb 15; 92-93():54-70. PubMed ID: 26952192 [Abstract] [Full Text] [Related]
20. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D. Proc Natl Acad Sci U S A; 2012 Jul 03; 109(27):10873-8. PubMed ID: 22733734 [Abstract] [Full Text] [Related] Page: [Next] [New Search]