These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


385 related items for PubMed ID: 18829

  • 1. [Some mechanisms of carbohydrate metabolism regulation with NADP participation].
    Golovats'kiĭ ID, Kolotnits'kiĭ AG, Krasnevich AIa.
    Ukr Biokhim Zh; 1977; 49(3):35-8. PubMed ID: 18829
    [Abstract] [Full Text] [Related]

  • 2. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA, Laboy JI, Din ZZ, Prabhakar P, Budker T, Chobanian M.
    Arch Biochem Biophys; 1999 Apr 15; 364(2):185-94. PubMed ID: 10190973
    [Abstract] [Full Text] [Related]

  • 3. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF.
    J Parasitol; 1982 Apr 15; 68(2):213-20. PubMed ID: 7077455
    [Abstract] [Full Text] [Related]

  • 4. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P, Laboy JI, Wang J, Budker T, Din ZZ, Chobanian M, Fahien LA.
    Arch Biochem Biophys; 1998 Dec 15; 360(2):195-205. PubMed ID: 9851831
    [Abstract] [Full Text] [Related]

  • 5. [NAD(NADP)-dependent glyceraldehyde 3-phosphate dehydrogenase from Chlorella. Kinetics of inhibition by the reaction products NAD and NADP].
    Tomova NG, Krysteva NG, Georgieva MA.
    Biokhimiia; 1981 Oct 15; 46(10):1748-53. PubMed ID: 7306593
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. [Regulation of ox liver glutamate dehydrogenase activity by coenzymes].
    Popova SV, Sugrobova NP.
    Biokhimiia; 1983 Nov 15; 48(11):1783-7. PubMed ID: 6661450
    [Abstract] [Full Text] [Related]

  • 8. Some kinetic properties of lactate dehydrogenase activity in cell extracts from a mammalian (ovine) corneal epithelium.
    Doughty MJ.
    Exp Eye Res; 1998 Feb 15; 66(2):231-9. PubMed ID: 9533849
    [Abstract] [Full Text] [Related]

  • 9. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M, Ibáñez-Hernández MA, Galván RE, Gutiérrez M, Durán-Reyes G, Medina-Navarro R, Pascoe-Lira D, Ortega-Camarillo C, Vilar-Rojas C, Cruz M, Baiza-Gutman LA.
    Life Sci; 2006 Apr 25; 78(22):2601-7. PubMed ID: 16325866
    [Abstract] [Full Text] [Related]

  • 10. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG, Stevens MJ.
    Invest Ophthalmol Vis Sci; 1999 Mar 25; 40(3):680-8. PubMed ID: 10067971
    [Abstract] [Full Text] [Related]

  • 11. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K, Valdés D, Cabrera R.
    FEBS J; 2012 Jul 25; 279(13):2296-309. PubMed ID: 22519976
    [Abstract] [Full Text] [Related]

  • 12. 2-Amino-3-carboxy-1,4-naphthoquinone affects the end-product profile of bifidobacteria through the mediated oxidation of NAD(P)H.
    Yamazaki S, Kaneko T, Taketomo N, Kano K, Ikeda T.
    Appl Microbiol Biotechnol; 2002 Jun 25; 59(1):72-8. PubMed ID: 12073135
    [Abstract] [Full Text] [Related]

  • 13. [Effect of ethyron on carbohydrate metabolism in the myocardium].
    Kovalev GV, Spasov AA.
    Farmakol Toksikol; 1976 Jun 25; 39(5):574-7. PubMed ID: 195836
    [Abstract] [Full Text] [Related]

  • 14. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K, Ma Q, Lu AY, Yang CS.
    Arch Biochem Biophys; 1995 Nov 10; 323(2):265-73. PubMed ID: 7487087
    [Abstract] [Full Text] [Related]

  • 15. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J, Shimizu K.
    Appl Microbiol Biotechnol; 2004 Apr 10; 64(3):367-75. PubMed ID: 14673546
    [Abstract] [Full Text] [Related]

  • 16. Pyruvate but not lactate prevents NADH-induced myoglobin oxidation.
    Olek RA, Antosiewicz J, Popinigis J, Gabbianelli R, Fedeli D, Falcioni G.
    Free Radic Biol Med; 2005 Jun 01; 38(11):1484-90. PubMed ID: 15890622
    [Abstract] [Full Text] [Related]

  • 17. Purification and characterization of glucose-6-phosphate dehydrogenase from Cryptococcus neoformans: identification as "nothing dehydrogenase".
    Niehaus WG, Mallett TC.
    Arch Biochem Biophys; 1994 Sep 01; 313(2):304-9. PubMed ID: 8080277
    [Abstract] [Full Text] [Related]

  • 18. Coupling of mitochondrial NADPH : NAD transhydrogenase with electron transport in adult Hymenolepis diminuta.
    Fioravanti CF.
    J Parasitol; 1981 Dec 01; 67(6):823-31. PubMed ID: 7328455
    [Abstract] [Full Text] [Related]

  • 19. The redox switch/redox coupling hypothesis.
    Cerdán S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, García-Martín ML.
    Neurochem Int; 2006 Dec 01; 48(6-7):523-30. PubMed ID: 16530294
    [Abstract] [Full Text] [Related]

  • 20. Purification and characterization of the NAD-preferring glucose 6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum).
    Ragunathan S, Levy HR.
    Arch Biochem Biophys; 1994 May 01; 310(2):360-6. PubMed ID: 8179320
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.