These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
236 related items for PubMed ID: 18835897
1. Bending flexibility of actin filaments during motor-induced sliding. Vikhorev PG, Vikhoreva NN, Månsson A. Biophys J; 2008 Dec 15; 95(12):5809-19. PubMed ID: 18835897 [Abstract] [Full Text] [Related]
2. Myosin-Induced Gliding Patterns at Varied [MgATP] Unveil a Dynamic Actin Filament. Bengtsson E, Persson M, Rahman MA, Kumar S, Takatsuki H, Månsson A. Biophys J; 2016 Oct 04; 111(7):1465-1477. PubMed ID: 27705769 [Abstract] [Full Text] [Related]
3. Trimethylamine N-oxide suppresses the activity of the actomyosin motor. Kumemoto R, Yusa K, Shibayama T, Hatori K. Biochim Biophys Acta; 2012 Oct 04; 1820(10):1597-604. PubMed ID: 22705940 [Abstract] [Full Text] [Related]
4. The excluded volume effect induced by poly(ethylene glycol) modulates the motility of actin filaments interacting with myosin. Munakata S, Hatori K. FEBS J; 2013 Nov 04; 280(22):5875-83. PubMed ID: 24004408 [Abstract] [Full Text] [Related]
5. Phalloidin affects the myosin-dependent sliding velocities of actin filaments in a bound-divalent cation dependent manner. Tokuraku K, Uyeda TQ. J Muscle Res Cell Motil; 2001 Nov 04; 22(4):371-8. PubMed ID: 11808777 [Abstract] [Full Text] [Related]
6. Actomyosin interaction at low ATP concentrations. Maffei M, Longa E, Sabatini A, Vacca A, Iotti S. Eur Biophys J; 2017 Mar 04; 46(2):195-202. PubMed ID: 28039513 [Abstract] [Full Text] [Related]
7. Mutational analysis of the role of hydrophobic residues in the 338-348 helix on actin in actomyosin interactions. Miller CJ, Doyle TC, Bobkova E, Botstein D, Reisler E. Biochemistry; 1996 Mar 26; 35(12):3670-6. PubMed ID: 8619986 [Abstract] [Full Text] [Related]
8. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. Vemula V, Huber T, Ušaj M, Bugyi B, Månsson A. J Biol Chem; 2021 Mar 26; 296():100181. PubMed ID: 33303625 [Abstract] [Full Text] [Related]
11. The Qdot-labeled actin super-resolution motility assay measures low-duty cycle muscle myosin step size. Wang Y, Ajtai K, Burghardt TP. Biochemistry; 2013 Mar 05; 52(9):1611-21. PubMed ID: 23383646 [Abstract] [Full Text] [Related]
12. Novel mode of cooperative binding between myosin and Mg2+ -actin filaments in the presence of low concentrations of ATP. Tokuraku K, Kurogi R, Toya R, Uyeda TQ. J Mol Biol; 2009 Feb 13; 386(1):149-62. PubMed ID: 19100745 [Abstract] [Full Text] [Related]
14. Noncooperative stabilization effect of phalloidin on ADP.BeFx- and ADP.AlF4-actin filaments. Orbán J, Lorinczy D, Hild G, Nyitrai M. Biochemistry; 2008 Apr 15; 47(15):4530-4. PubMed ID: 18361506 [Abstract] [Full Text] [Related]
15. 1,3-Diethylurea-enhanced Mg-ATPase activity of skeletal muscle myosin with a converse effect on the sliding motility. Wazawa T, Yasui S, Morimoto N, Suzuki M. Biochim Biophys Acta; 2013 Dec 15; 1834(12):2620-9. PubMed ID: 23954499 [Abstract] [Full Text] [Related]
17. Temperature control of the motility of actin filaments interacting with myosin molecules using an electrically conductive glass in the presence of direct current. Wada R, Sato D, Nakamura T, Hatori K. Arch Biochem Biophys; 2015 Nov 15; 586():51-6. PubMed ID: 26456400 [Abstract] [Full Text] [Related]
18. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Toyoshima YY, Kron SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA. Nature; 2015 Nov 15; 328(6130):536-9. PubMed ID: 2956522 [Abstract] [Full Text] [Related]