These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 18836074

  • 1. Highly efficient retinal metabolism in cones.
    Miyazono S, Shimauchi-Matsukawa Y, Tachibanaki S, Kawamura S.
    Proc Natl Acad Sci U S A; 2008 Oct 14; 105(41):16051-6. PubMed ID: 18836074
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle.
    Sato S, Miyazono S, Tachibanaki S, Kawamura S.
    J Biol Chem; 2015 Jan 30; 290(5):2983-92. PubMed ID: 25533474
    [Abstract] [Full Text] [Related]

  • 4. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
    Sato S, Kefalov VJ.
    J Physiol; 2016 Nov 15; 594(22):6753-6765. PubMed ID: 27385534
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV, Maeda A, Tang PH, Imanishi Y, Palczewski K, Kefalov VJ.
    J Physiol; 2015 Nov 15; 593(22):4923-41. PubMed ID: 26350353
    [Abstract] [Full Text] [Related]

  • 7. Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes.
    Yamaoka H, Tachibanaki S, Kawamura S.
    J Biol Chem; 2015 Oct 02; 290(40):24381-90. PubMed ID: 26286749
    [Abstract] [Full Text] [Related]

  • 8. The role of retinol dehydrogenase 10 in the cone visual cycle.
    Xue Y, Sato S, Razafsky D, Sahu B, Shen SQ, Potter C, Sandell LL, Corbo JC, Palczewski K, Maeda A, Hodzic D, Kefalov VJ.
    Sci Rep; 2017 May 24; 7(1):2390. PubMed ID: 28539612
    [Abstract] [Full Text] [Related]

  • 9. In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death.
    Samardzija M, Tanimoto N, Kostic C, Beck S, Oberhauser V, Joly S, Thiersch M, Fahl E, Arsenijevic Y, von Lintig J, Wenzel A, Seeliger MW, Grimm C.
    Hum Mol Genet; 2009 Apr 01; 18(7):1266-75. PubMed ID: 19147682
    [Abstract] [Full Text] [Related]

  • 10. The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.
    Sato S, Frederiksen R, Cornwall MC, Kefalov VJ.
    Vis Neurosci; 2017 Jan 01; 34():E004. PubMed ID: 28359344
    [Abstract] [Full Text] [Related]

  • 11. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function.
    Sahu B, Maeda A.
    Nutrients; 2016 Nov 22; 8(11):. PubMed ID: 27879662
    [Abstract] [Full Text] [Related]

  • 12. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.
    Tachibanaki S, Arinobu D, Shimauchi-Matsukawa Y, Tsushima S, Kawamura S.
    Proc Natl Acad Sci U S A; 2005 Jun 28; 102(26):9329-34. PubMed ID: 15958532
    [Abstract] [Full Text] [Related]

  • 13. Molecular mechanisms characterizing cone photoresponses.
    Tachibanaki S, Shimauchi-Matsukawa Y, Arinobu D, Kawamura S.
    Photochem Photobiol; 2007 Jun 28; 83(1):19-26. PubMed ID: 16706600
    [Abstract] [Full Text] [Related]

  • 14. RDH12 allows cone photoreceptors to regenerate opsin visual pigments from a chromophore precursor to escape competition with rods.
    Kaylor JJ, Frederiksen R, Bedrosian CK, Huang M, Stennis-Weatherspoon D, Huynh T, Ngan T, Mulamreddy V, Sampath AP, Fain GL, Travis GH.
    Curr Biol; 2024 Aug 05; 34(15):3342-3353.e6. PubMed ID: 38981477
    [Abstract] [Full Text] [Related]

  • 15. Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12.
    Chen C, Thompson DA, Koutalos Y.
    J Biol Chem; 2012 Jul 13; 287(29):24662-70. PubMed ID: 22621924
    [Abstract] [Full Text] [Related]

  • 16. Late stages of visual pigment photolysis in situ: cones vs. rods.
    Golobokova EY, Govardovskii VI.
    Vision Res; 2006 Jul 13; 46(14):2287-97. PubMed ID: 16473387
    [Abstract] [Full Text] [Related]

  • 17. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L, Pulukuri S, Mears AJ, Swaroop A, Reese BE, Sitaramayya A.
    Mol Vis; 2004 May 11; 10():323-7. PubMed ID: 15152186
    [Abstract] [Full Text] [Related]

  • 18. The visual cycle of the cone photoreceptors of the retina.
    Wolf G.
    Nutr Rev; 2004 Jul 11; 62(7 Pt 1):283-6. PubMed ID: 15384919
    [Abstract] [Full Text] [Related]

  • 19. Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man.
    Cideciyan AV, Haeseleer F, Fariss RN, Aleman TS, Jang GF, Verlinde CLMJ, Marmor MF, Jacobson SG, Palczewski K.
    Vis Neurosci; 2000 Jul 11; 17(5):667-678. PubMed ID: 11153648
    [Abstract] [Full Text] [Related]

  • 20. Retinol dehydrogenases (RDHs) in the visual cycle.
    Parker RO, Crouch RK.
    Exp Eye Res; 2010 Dec 11; 91(6):788-92. PubMed ID: 20801113
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.