These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


412 related items for PubMed ID: 18836715

  • 1. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E.
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [Abstract] [Full Text] [Related]

  • 2. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.
    Gómez-Pastor R, Pérez-Torrado R, Matallana E.
    Appl Microbiol Biotechnol; 2012 May; 94(3):773-87. PubMed ID: 22223102
    [Abstract] [Full Text] [Related]

  • 3. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 4. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.
    Garre E, Raginel F, Palacios A, Julien A, Matallana E.
    Int J Food Microbiol; 2010 Jan 01; 136(3):295-303. PubMed ID: 19914726
    [Abstract] [Full Text] [Related]

  • 5. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass.
    Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E.
    Microb Cell Fact; 2010 Feb 12; 9():9. PubMed ID: 20152017
    [Abstract] [Full Text] [Related]

  • 6. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A, del Olmo ML.
    FEMS Yeast Res; 2004 May 12; 4(7):699-710. PubMed ID: 15093773
    [Abstract] [Full Text] [Related]

  • 7. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.
    FEMS Yeast Res; 2008 Nov 12; 8(7):1137-46. PubMed ID: 18503542
    [Abstract] [Full Text] [Related]

  • 8. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C, McDonagh B, Peinado J, Bárcena JA, Matallana E, Aranda A.
    Appl Environ Microbiol; 2019 Apr 01; 85(7):. PubMed ID: 30683739
    [Abstract] [Full Text] [Related]

  • 9. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C, Cárdenas J, Melo F, Agosin E.
    Yeast; 2005 Apr 15; 22(5):369-83. PubMed ID: 15806604
    [Abstract] [Full Text] [Related]

  • 10. Early transcriptional response of wine yeast after rehydration: osmotic shock and metabolic activation.
    Novo M, Beltran G, Rozes N, Guillamon JM, Sokol S, Leberre V, François J, Mas A.
    FEMS Yeast Res; 2007 Mar 15; 7(2):304-16. PubMed ID: 17132143
    [Abstract] [Full Text] [Related]

  • 11. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F, Carrasco P, Pérez-Ortín JE, del Olmo Ml, Aranda A.
    Int J Food Microbiol; 2007 Feb 28; 114(1):83-91. PubMed ID: 17187885
    [Abstract] [Full Text] [Related]

  • 12. Transcriptomic and proteomic insights of the wine yeast biomass propagation process.
    Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E.
    FEMS Yeast Res; 2010 Nov 28; 10(7):870-84. PubMed ID: 20738407
    [Abstract] [Full Text] [Related]

  • 13. Fermentative capacity in high-cell-density fed-batch cultures of baker's yeast.
    van Hoek P, de Hulster E, van Dijken JP, Pronk JT.
    Biotechnol Bioeng; 2000 Jun 05; 68(5):517-23. PubMed ID: 10797237
    [Abstract] [Full Text] [Related]

  • 14. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.
    Chiva R, Baiges I, Mas A, Guillamon JM.
    J Appl Microbiol; 2009 Jul 05; 107(1):235-44. PubMed ID: 19302302
    [Abstract] [Full Text] [Related]

  • 15. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C, Nicaud JM, Barre P, Gaillardin C.
    Yeast; 1997 Aug 05; 13(10):903-15. PubMed ID: 9271106
    [Abstract] [Full Text] [Related]

  • 16. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M.
    Int J Food Microbiol; 2009 Mar 31; 130(2):122-30. PubMed ID: 19217680
    [Abstract] [Full Text] [Related]

  • 17. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.
    Orellana M, Aceituno FF, Slater AW, Almonacid LI, Melo F, Agosin E.
    FEMS Yeast Res; 2014 May 31; 14(3):412-24. PubMed ID: 24387769
    [Abstract] [Full Text] [Related]

  • 18. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.
    Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E.
    Biotechnol J; 2014 Aug 31; 9(8):1055-64. PubMed ID: 24644263
    [Abstract] [Full Text] [Related]

  • 19. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection.
    Zuzuarregui A, del Olmo M.
    Antonie Van Leeuwenhoek; 2004 May 31; 85(4):271-80. PubMed ID: 15028866
    [Abstract] [Full Text] [Related]

  • 20. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation.
    Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E.
    Microb Cell Fact; 2012 Jan 09; 11():4. PubMed ID: 22230188
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.