These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


448 related items for PubMed ID: 18836715

  • 21. Engineered Saccharomyces cerevisiae strain BioS-OS1/2, for the detection of oxidative stress.
    Jayaraman M, Radhika V, Bamne MN, Ramos R, Briggs R, Dhanasekaran DN.
    Biotechnol Prog; 2005; 21(5):1373-9. PubMed ID: 16209540
    [Abstract] [Full Text] [Related]

  • 22. Modeling of yeast metabolism and process dynamics in batch fermentation.
    Sainz J, Pizarro F, Pérez-Correa JR, Agosin E.
    Biotechnol Bioeng; 2003 Mar 30; 81(7):818-28. PubMed ID: 12557315
    [Abstract] [Full Text] [Related]

  • 23. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism.
    Pérez-Torrado R, Matallana E.
    Biotechnol Prog; 2015 Mar 30; 31(1):20-4. PubMed ID: 25219977
    [Abstract] [Full Text] [Related]

  • 24. Construction of a recombinant autolytic wine yeast strain overexpressing the csc1-1 allele.
    Cebollero E, Gonzalez-Ramos D, Gonzalez R.
    Biotechnol Prog; 2009 Mar 30; 25(6):1598-604. PubMed ID: 19725125
    [Abstract] [Full Text] [Related]

  • 25. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L.
    Biotechnol Bioeng; 2005 Jun 20; 90(6):703-14. PubMed ID: 15812801
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Improving yield of industrial biomass propagation by increasing the Trx2p dosage.
    Gómez-Pastor R, Pérez-Torrado R, Matallana E.
    Bioeng Bugs; 2010 Jun 20; 1(5):352-3. PubMed ID: 21326836
    [Abstract] [Full Text] [Related]

  • 28. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen.
    Brombacher K, Fischer BB, Rüfenacht K, Eggen RI.
    Yeast; 2006 Jul 30; 23(10):741-50. PubMed ID: 16862604
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Towards an understanding of the adaptation of wine yeasts to must: relevance of the osmotic stress response.
    Jiménez-Martí E, Gomar-Alba M, Palacios A, Ortiz-Julien A, del Olmo ML.
    Appl Microbiol Biotechnol; 2011 Mar 30; 89(5):1551-61. PubMed ID: 20941492
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Comparing the transcriptomes of wine yeast strains: toward understanding the interaction between environment and transcriptome during fermentation.
    Rossouw D, Bauer FF.
    Appl Microbiol Biotechnol; 2009 Oct 30; 84(5):937-54. PubMed ID: 19711068
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.