These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


664 related items for PubMed ID: 18838160

  • 1. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).
    Zhang P, Hong Z, Yu T, Chen X, Jing X.
    Biomaterials; 2009 Jan; 30(1):58-70. PubMed ID: 18838160
    [Abstract] [Full Text] [Related]

  • 2. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B, Zhang PB, Wang ZL, Lyu ZW, Wu H.
    J Zhejiang Univ Sci B; 2009 Jan; 18(11):963-976. PubMed ID: 29119734
    [Abstract] [Full Text] [Related]

  • 3. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates.
    Hu Y, Gu X, Yang Y, Huang J, Hu M, Chen W, Tong Z, Wang C.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):17166-75. PubMed ID: 25243730
    [Abstract] [Full Text] [Related]

  • 4. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P, Wu H, Wu H, Lù Z, Deng C, Hong Z, Jing X, Chen X.
    Biomacromolecules; 2011 Jul 11; 12(7):2667-80. PubMed ID: 21604718
    [Abstract] [Full Text] [Related]

  • 5. Enhanced in Vitro Mineralization and in Vivo Osteogenesis of Composite Scaffolds through Controlled Surface Grafting of L-Lactic Acid Oligomer on Nanohydroxyapatite.
    Wang Z, Xu Y, Wang Y, Ito Y, Zhang P, Chen X.
    Biomacromolecules; 2016 Mar 14; 17(3):818-29. PubMed ID: 26821731
    [Abstract] [Full Text] [Related]

  • 6. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model.
    Kim J, McBride S, Tellis B, Alvarez-Urena P, Song YH, Dean DD, Sylvia VL, Elgendy H, Ong J, Hollinger JO.
    Biofabrication; 2012 Jun 14; 4(2):025003. PubMed ID: 22427485
    [Abstract] [Full Text] [Related]

  • 7. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model.
    Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, Fan JJ, Chen L, Dong X, Liu XN, Pei GX, Ding JD.
    Int J Nanomedicine; 2013 Jun 14; 8():1855-65. PubMed ID: 23690683
    [Abstract] [Full Text] [Related]

  • 8. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol.
    Ignjatović N, Uskoković V, Ajduković Z, Uskoković D.
    Mater Sci Eng C Mater Biol Appl; 2013 Mar 01; 33(2):943-50. PubMed ID: 25382938
    [Abstract] [Full Text] [Related]

  • 9. Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2.
    Kim SS, Gwak SJ, Kim BS.
    J Biomed Mater Res A; 2008 Oct 01; 87(1):245-53. PubMed ID: 18181112
    [Abstract] [Full Text] [Related]

  • 10. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair.
    Cui Y, Liu Y, Cui Y, Jing X, Zhang P, Chen X.
    Acta Biomater; 2009 Sep 01; 5(7):2680-92. PubMed ID: 19376759
    [Abstract] [Full Text] [Related]

  • 11. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH, Wang XL, Xie XH, Zheng LZ, Yao D, Wang DP, Leng Y, Zhang G, Qin L.
    Acta Biomater; 2012 Aug 01; 8(8):3128-37. PubMed ID: 22543006
    [Abstract] [Full Text] [Related]

  • 12. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F, Ye J.
    J Biomed Mater Res A; 2012 Dec 01; 100(12):3239-50. PubMed ID: 22733543
    [Abstract] [Full Text] [Related]

  • 13. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres.
    Son JS, Appleford M, Ong JL, Wenke JC, Kim JM, Choi SH, Oh DS.
    J Control Release; 2011 Jul 30; 153(2):133-40. PubMed ID: 21420453
    [Abstract] [Full Text] [Related]

  • 14. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S, Lin KF, Sun Z, Song Y, Zhao YN, Wang Z, Bi L, Liu J.
    Artif Organs; 2016 Jul 30; 40(7):E128-35. PubMed ID: 27378617
    [Abstract] [Full Text] [Related]

  • 15. Biological Properties of Low-Toxicity PLGA and PLGA/PHB Fibrous Nanocomposite Implants for Osseous Tissue Regeneration. Part I: Evaluation of Potential Biotoxicity.
    Krucińska I, Żywicka B, Komisarczyk A, Szymonowicz M, Kowalska S, Zaczyńska E, Struszczyk M, Czarny A, Jadczyk P, Umińska-Wasiluk B, Rybak Z, Kowalczuk M.
    Molecules; 2017 Nov 29; 22(12):. PubMed ID: 29186078
    [Abstract] [Full Text] [Related]

  • 16. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C, Qian X, Tang Z, Hu Q, Chen J, Gao C, Tang R, Tong X, Wang J.
    J Biomed Nanotechnol; 2014 Jun 29; 10(6):1091-104. PubMed ID: 24749403
    [Abstract] [Full Text] [Related]

  • 17. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite.
    Lee JH, Rim NG, Jung HS, Shin H.
    Macromol Biosci; 2010 Feb 11; 10(2):173-82. PubMed ID: 19685498
    [Abstract] [Full Text] [Related]

  • 18. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles.
    Hong Z, Zhang P, Liu A, Chen L, Chen X, Jing X.
    J Biomed Mater Res A; 2007 Jun 01; 81(3):515-22. PubMed ID: 17133447
    [Abstract] [Full Text] [Related]

  • 19. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L.
    J Tissue Eng Regen Med; 2015 Aug 01; 9(8):961-72. PubMed ID: 23255530
    [Abstract] [Full Text] [Related]

  • 20. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.
    Rong ZJ, Yang LJ, Cai BT, Zhu LX, Cao YL, Wu GF, Zhang ZJ.
    J Mater Sci Mater Med; 2016 May 01; 27(5):89. PubMed ID: 26975746
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.