These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


65 related items for PubMed ID: 18840551

  • 1. Chemical shift mapping of gammadelta resolvase dimer and activated tetramer: mechanistic implications for DNA strand exchange.
    Gehman JD, Cocco MJ, Grindley ND.
    Biochim Biophys Acta; 2008 Dec; 1784(12):2086-92. PubMed ID: 18840551
    [Abstract] [Full Text] [Related]

  • 2. Structure of a synaptic gammadelta resolvase tetramer covalently linked to two cleaved DNAs.
    Li W, Kamtekar S, Xiong Y, Sarkis GJ, Grindley ND, Steitz TA.
    Science; 2005 Aug 19; 309(5738):1210-5. PubMed ID: 15994378
    [Abstract] [Full Text] [Related]

  • 3. Solution structure of the Tn3 resolvase-crossover site synaptic complex.
    Nöllmann M, He J, Byron O, Stark WM.
    Mol Cell; 2004 Oct 08; 16(1):127-37. PubMed ID: 15469828
    [Abstract] [Full Text] [Related]

  • 4. Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation.
    Burke ME, Arnold PH, He J, Wenwieser SV, Rowland SJ, Boocock MR, Stark WM.
    Mol Microbiol; 2004 Feb 08; 51(4):937-48. PubMed ID: 14763971
    [Abstract] [Full Text] [Related]

  • 5. Synapsis and catalysis by activated Tn3 resolvase mutants.
    Olorunniji FJ, He J, Wenwieser SV, Boocock MR, Stark WM.
    Nucleic Acids Res; 2008 Dec 08; 36(22):7181-91. PubMed ID: 19015124
    [Abstract] [Full Text] [Related]

  • 6. Implications of structures of synaptic tetramers of gamma delta resolvase for the mechanism of recombination.
    Kamtekar S, Ho RS, Cocco MJ, Li W, Wenwieser SV, Boocock MR, Grindley ND, Steitz TA.
    Proc Natl Acad Sci U S A; 2006 Jul 11; 103(28):10642-7. PubMed ID: 16807292
    [Abstract] [Full Text] [Related]

  • 7. Solution structure of the catalytic domain of gammadelta resolvase. Implications for the mechanism of catalysis.
    Pan B, Maciejewski MW, Marintchev A, Mullen GP.
    J Mol Biol; 2001 Jul 27; 310(5):1089-107. PubMed ID: 11501998
    [Abstract] [Full Text] [Related]

  • 8. Crystal structure of an intermediate of rotating dimers within the synaptic tetramer of the G-segment invertase.
    Ritacco CJ, Kamtekar S, Wang J, Steitz TA.
    Nucleic Acids Res; 2013 Feb 01; 41(4):2673-82. PubMed ID: 23275567
    [Abstract] [Full Text] [Related]

  • 9. The protein-protein interactions required for assembly of the Tn3 resolution synapse.
    Rowland SJ, Boocock MR, Burke ME, Rice PA, Stark WM.
    Mol Microbiol; 2020 Dec 01; 114(6):952-965. PubMed ID: 33405333
    [Abstract] [Full Text] [Related]

  • 10. Tetrameric structure of a serine integrase catalytic domain.
    Yuan P, Gupta K, Van Duyne GD.
    Structure; 2008 Aug 06; 16(8):1275-86. PubMed ID: 18682229
    [Abstract] [Full Text] [Related]

  • 11. Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome.
    Rowland SJ, Boocock MR, McPherson AL, Mouw KW, Rice PA, Stark WM.
    Mol Microbiol; 2009 Oct 06; 74(2):282-98. PubMed ID: 19508283
    [Abstract] [Full Text] [Related]

  • 12. Deuterium-proton exchange on the native wild-type transthyretin tetramer identifies the stable core of the individual subunits and indicates mobility at the subunit interface.
    Liu K, Cho HS, Hoyt DW, Nguyen TN, Olds P, Kelly JW, Wemmer DE.
    J Mol Biol; 2000 Nov 03; 303(4):555-65. PubMed ID: 11054291
    [Abstract] [Full Text] [Related]

  • 13. Behavior of Tn3 resolvase in solution and its interaction with res.
    Nöllmann M, Byron O, Stark WM.
    Biophys J; 2005 Sep 03; 89(3):1920-31. PubMed ID: 15980165
    [Abstract] [Full Text] [Related]

  • 14. Structure and properties of a dimeric N-terminal fragment of human ubiquitin.
    Bolton D, Evans PA, Stott K, Broadhurst RW.
    J Mol Biol; 2001 Dec 07; 314(4):773-87. PubMed ID: 11733996
    [Abstract] [Full Text] [Related]

  • 15. NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase.
    Langer T, Vogtherr M, Elshorst B, Betz M, Schieborr U, Saxena K, Schwalbe H.
    Chembiochem; 2004 Nov 05; 5(11):1508-16. PubMed ID: 15481030
    [Abstract] [Full Text] [Related]

  • 16. Nicked-site substrates for a serine recombinase reveal enzyme-DNA communications and an essential tethering role of covalent enzyme-DNA linkages.
    Olorunniji FJ, McPherson AL, Pavlou HJ, McIlwraith MJ, Brazier JA, Cosstick R, Stark WM.
    Nucleic Acids Res; 2015 Jul 13; 43(12):6134-43. PubMed ID: 25990737
    [Abstract] [Full Text] [Related]

  • 17. The catalytic residues of Tn3 resolvase.
    Olorunniji FJ, Stark WM.
    Nucleic Acids Res; 2009 Dec 13; 37(22):7590-602. PubMed ID: 19789272
    [Abstract] [Full Text] [Related]

  • 18. Single residue modification of only one dimer within the hemoglobin tetramer reveals autonomous dimer function.
    Ackers GK, Dalessio PM, Lew GH, Daugherty MA, Holt JM.
    Proc Natl Acad Sci U S A; 2002 Jul 23; 99(15):9777-82. PubMed ID: 12119405
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Solution structure and dynamics of Crh, the Bacillus subtilis catabolite repression HPr.
    Favier A, Brutscher B, Blackledge M, Galinier A, Deutscher J, Penin F, Marion D.
    J Mol Biol; 2002 Mar 15; 317(1):131-44. PubMed ID: 11916384
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.