These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 18842254

  • 1. Hippocampal N-acetylaspartate levels before trauma predict the development of long-lasting posttraumatic stress disorder-like symptoms in mice.
    Siegmund A, Kaltwasser SF, Holsboer F, Czisch M, Wotjak CT.
    Biol Psychiatry; 2009 Feb 01; 65(3):258-62. PubMed ID: 18842254
    [Abstract] [Full Text] [Related]

  • 2. Magnetic resonance spectroscopy reveals N-acetylaspartate reduction in hippocampus and cingulate cortex after fear conditioning.
    Zhou IY, Ding AY, Li Q, McAlonan GM, Wu EX.
    Psychiatry Res; 2012 Nov 30; 204(2-3):178-83. PubMed ID: 23137804
    [Abstract] [Full Text] [Related]

  • 3. Evidence of resilience: neuroimaging in former prisoners of war.
    Freeman T, Kimbrell T, Booe L, Myers M, Cardwell D, Lindquist DM, Hart J, Komoroski RA.
    Psychiatry Res; 2006 Jan 30; 146(1):59-64. PubMed ID: 16361087
    [Abstract] [Full Text] [Related]

  • 4. Decreased N-acetyl-aspartate levels in anterior cingulate and hippocampus in subjects with post-traumatic stress disorder: a proton magnetic resonance spectroscopy study.
    Ham BJ, Chey J, Yoon SJ, Sung Y, Jeong DU, Ju Kim S, Sim ME, Choi N, Choi IG, Renshaw PF, Lyoo IK.
    Eur J Neurosci; 2007 Jan 30; 25(1):324-9. PubMed ID: 17241294
    [Abstract] [Full Text] [Related]

  • 5. Hippocampus Glutamate and N-Acetyl Aspartate Markers of Excitotoxic Neuronal Compromise in Posttraumatic Stress Disorder.
    Rosso IM, Crowley DJ, Silveri MM, Rauch SL, Jensen JE.
    Neuropsychopharmacology; 2017 Jul 30; 42(8):1698-1705. PubMed ID: 28195577
    [Abstract] [Full Text] [Related]

  • 6. Hyperarousal does not depend on trauma-related contextual memory in an animal model of Posttraumatic Stress Disorder.
    Siegmund A, Wotjak CT.
    Physiol Behav; 2007 Jan 30; 90(1):103-7. PubMed ID: 17049568
    [Abstract] [Full Text] [Related]

  • 7. Maternal inexperience as a risk factor of innate fear and PTSD-like symptoms in mice.
    Siegmund A, Dahlhoff M, Habersetzer U, Mederer A, Wolf E, Holsboer F, Wotjak CT.
    J Psychiatr Res; 2009 Sep 30; 43(14):1156-65. PubMed ID: 19304295
    [Abstract] [Full Text] [Related]

  • 8. Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD).
    Golub Y, Mauch CP, Dahlhoff M, Wotjak CT.
    Behav Brain Res; 2009 Dec 28; 205(2):544-9. PubMed ID: 19703496
    [Abstract] [Full Text] [Related]

  • 9. Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder.
    Golub Y, Kaltwasser SF, Mauch CP, Herrmann L, Schmidt U, Holsboer F, Czisch M, Wotjak CT.
    J Psychiatr Res; 2011 May 28; 45(5):650-9. PubMed ID: 21106206
    [Abstract] [Full Text] [Related]

  • 10. More vulnerability of left than right hippocampal damage in right-handed patients with post-traumatic stress disorder.
    Shu XJ, Xue L, Liu W, Chen FY, Zhu C, Sun XH, Wang XP, Liu ZC, Zhao H.
    Psychiatry Res; 2013 Jun 30; 212(3):237-44. PubMed ID: 23149034
    [Abstract] [Full Text] [Related]

  • 11. Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims.
    Delahanty DL, Nugent NR, Christopher NC, Walsh M.
    Psychoneuroendocrinology; 2005 Feb 30; 30(2):121-8. PubMed ID: 15471610
    [Abstract] [Full Text] [Related]

  • 12. Risk and resilience in posttraumatic stress disorder.
    Yehuda R.
    J Clin Psychiatry; 2004 Feb 30; 65 Suppl 1():29-36. PubMed ID: 14728094
    [Abstract] [Full Text] [Related]

  • 13. Tonic and phasic heart rate as predictors of posttraumatic stress disorder.
    O'Donnell ML, Creamer M, Elliott P, Bryant R.
    Psychosom Med; 2007 Apr 30; 69(3):256-61. PubMed ID: 17420442
    [Abstract] [Full Text] [Related]

  • 14. Metabolic alterations in the amygdala in borderline personality disorder: a proton magnetic resonance spectroscopy study.
    Hoerst M, Weber-Fahr W, Tunc-Skarka N, Ruf M, Bohus M, Schmahl C, Ende G.
    Biol Psychiatry; 2010 Mar 01; 67(5):399-405. PubMed ID: 19931853
    [Abstract] [Full Text] [Related]

  • 15. Segmented hippocampal volume in children and adolescents with posttraumatic stress disorder.
    Tupler LA, De Bellis MD.
    Biol Psychiatry; 2006 Mar 15; 59(6):523-9. PubMed ID: 16199014
    [Abstract] [Full Text] [Related]

  • 16. The role of the galaninergic system in modulating stress-related responses in an animal model of posttraumatic stress disorder.
    Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H.
    Biol Psychiatry; 2009 Mar 01; 65(5):383-91. PubMed ID: 19095221
    [Abstract] [Full Text] [Related]

  • 17. A prospective study of appraisals in childhood posttraumatic stress disorder.
    Bryant RA, Salmon K, Sinclair E, Davidson P.
    Behav Res Ther; 2007 Oct 01; 45(10):2502-7. PubMed ID: 17560541
    [Abstract] [Full Text] [Related]

  • 18. Regional metabolic changes in the hippocampus and posterior cingulate area detected with 3-Tesla magnetic resonance spectroscopy in patients with mild cognitive impairment and Alzheimer disease.
    Wang Z, Zhao C, Yu L, Zhou W, Li K.
    Acta Radiol; 2009 Apr 01; 50(3):312-9. PubMed ID: 19235582
    [Abstract] [Full Text] [Related]

  • 19. Importance of early environment in the development of post-traumatic stress disorder-like behaviors.
    Imanaka A, Morinobu S, Toki S, Yamawaki S.
    Behav Brain Res; 2006 Oct 02; 173(1):129-37. PubMed ID: 16860405
    [Abstract] [Full Text] [Related]

  • 20. Neurochemistry of the hippocampus in patients with obsessive-compulsive disorder.
    Atmaca M, Yildirim H, Ozdemir H, Koc M, Ozler S, Tezcan E.
    Psychiatry Clin Neurosci; 2009 Aug 02; 63(4):486-90. PubMed ID: 19531109
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.