These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


422 related items for PubMed ID: 18844852

  • 1. Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention.
    Haussler MR, Haussler CA, Bartik L, Whitfield GK, Hsieh JC, Slater S, Jurutka PW.
    Nutr Rev; 2008 Oct; 66(10 Suppl 2):S98-112. PubMed ID: 18844852
    [Abstract] [Full Text] [Related]

  • 2. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands.
    Jurutka PW, Bartik L, Whitfield GK, Mathern DR, Barthel TK, Gurevich M, Hsieh JC, Kaczmarska M, Haussler CA, Haussler MR.
    J Bone Miner Res; 2007 Dec; 22 Suppl 2():V2-10. PubMed ID: 18290715
    [Abstract] [Full Text] [Related]

  • 3. 1alpha,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action.
    Nezbedova P, Brtko J.
    Endocr Regul; 2004 Mar; 38(1):29-38. PubMed ID: 15147236
    [Abstract] [Full Text] [Related]

  • 4. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms.
    Haussler MR, Jurutka PW, Mizwicki M, Norman AW.
    Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):543-59. PubMed ID: 21872797
    [Abstract] [Full Text] [Related]

  • 5. Vitamin D receptor ligands for osteoporosis.
    Cheskis BJ, Freedman LP, Nagpal S.
    Curr Opin Investig Drugs; 2006 Oct; 7(10):906-11. PubMed ID: 17086935
    [Abstract] [Full Text] [Related]

  • 6. Molecular mechanisms of vitamin D action.
    Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh JC, Jurutka PW.
    Calcif Tissue Int; 2013 Feb; 92(2):77-98. PubMed ID: 22782502
    [Abstract] [Full Text] [Related]

  • 7. Therapeutic applications for novel non-hypercalcemic vitamin D receptor ligands.
    Choi M, Makishima M.
    Expert Opin Ther Pat; 2009 May; 19(5):593-606. PubMed ID: 19441936
    [Abstract] [Full Text] [Related]

  • 8. Altered gene expression profile in the kidney of vitamin D receptor knockout mice.
    Li X, Zheng W, Li YC.
    J Cell Biochem; 2003 Jul 01; 89(4):709-19. PubMed ID: 12858337
    [Abstract] [Full Text] [Related]

  • 9. Ligand-independent actions of the vitamin D receptor maintain hair follicle homeostasis.
    Skorija K, Cox M, Sisk JM, Dowd DR, MacDonald PN, Thompson CC, Demay MB.
    Mol Endocrinol; 2005 Apr 01; 19(4):855-62. PubMed ID: 15591533
    [Abstract] [Full Text] [Related]

  • 10. Does D matter? The role of vitamin D in hair disorders and hair follicle cycling.
    Amor KT, Rashid RM, Mirmirani P.
    Dermatol Online J; 2010 Feb 15; 16(2):3. PubMed ID: 20178699
    [Abstract] [Full Text] [Related]

  • 11. Vitamin D resistance.
    Bouillon R, Verstuyf A, Mathieu C, Van Cromphaut S, Masuyama R, Dehaes P, Carmeliet G.
    Best Pract Res Clin Endocrinol Metab; 2006 Dec 15; 20(4):627-45. PubMed ID: 17161336
    [Abstract] [Full Text] [Related]

  • 12. [Regulation of gene expression and vitamin].
    Takeda E, Yamamoto H, Miyamoto K.
    Nihon Rinsho; 1999 Oct 15; 57(10):2295-300. PubMed ID: 10540876
    [Abstract] [Full Text] [Related]

  • 13. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice.
    Kovacs CS, Woodland ML, Fudge NJ, Friel JK.
    Am J Physiol Endocrinol Metab; 2005 Jul 15; 289(1):E133-44. PubMed ID: 15741244
    [Abstract] [Full Text] [Related]

  • 14. Development and progression of alopecia in the vitamin D receptor null mouse.
    Bikle DD, Elalieh H, Chang S, Xie Z, Sundberg JP.
    J Cell Physiol; 2006 May 15; 207(2):340-53. PubMed ID: 16419036
    [Abstract] [Full Text] [Related]

  • 15. The flavonoid apigenin suppresses vitamin D receptor expression and vitamin D responsiveness in normal human keratinocytes.
    Segaert S, Courtois S, Garmyn M, Degreef H, Bouillon R.
    Biochem Biophys Res Commun; 2000 Feb 05; 268(1):237-41. PubMed ID: 10652242
    [Abstract] [Full Text] [Related]

  • 16. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice.
    Hesse M, Fröhlich LF, Zeitz U, Lanske B, Erben RG.
    Matrix Biol; 2007 Mar 05; 26(2):75-84. PubMed ID: 17123805
    [Abstract] [Full Text] [Related]

  • 17. Vitamin D and prevention of breast cancer.
    Welsh J.
    Acta Pharmacol Sin; 2007 Sep 05; 28(9):1373-82. PubMed ID: 17723171
    [Abstract] [Full Text] [Related]

  • 18. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3.
    Bolt MJ, Liu W, Qiao G, Kong J, Zheng W, Krausz T, Cs-Szabo G, Sitrin MD, Li YC.
    Am J Physiol Endocrinol Metab; 2004 Oct 05; 287(4):E744-9. PubMed ID: 15165995
    [Abstract] [Full Text] [Related]

  • 19. [VDR knockout mice and bone mineralization disorders].
    Takeyama K, Yamamoto Y, Kato S.
    Clin Calcium; 2007 Oct 05; 17(10):1560-6. PubMed ID: 17906409
    [Abstract] [Full Text] [Related]

  • 20. Vitamin D signaling is modulated on multiple levels in health and disease.
    Ebert R, Schütze N, Adamski J, Jakob F.
    Mol Cell Endocrinol; 2006 Mar 27; 248(1-2):149-59. PubMed ID: 16406653
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.