These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


553 related items for PubMed ID: 18845350

  • 21. Modeling the survival of Salmonella spp. in chorizos.
    Hajmeer M, Basheer I, Hew C, Cliver DO.
    Int J Food Microbiol; 2006 Mar 01; 107(1):59-67. PubMed ID: 16303199
    [Abstract] [Full Text] [Related]

  • 22. Bayesian synthesis of a pathogen growth model: Listeria monocytogenes under competition.
    Powell MR, Tamplin M, Marks B, Campos DT.
    Int J Food Microbiol; 2006 May 25; 109(1-2):34-46. PubMed ID: 16499986
    [Abstract] [Full Text] [Related]

  • 23. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R, Lindblad M.
    Int J Food Microbiol; 2009 Jan 31; 129(1):59-67. PubMed ID: 19064299
    [Abstract] [Full Text] [Related]

  • 24. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone)--effect of modified atmosphere packaging and previous frozen storage.
    Dalgaard P, Madsen HL, Samieian N, Emborg J.
    J Appl Microbiol; 2006 Jul 31; 101(1):80-95. PubMed ID: 16834594
    [Abstract] [Full Text] [Related]

  • 25. Species-specific DNA probe and development of a quantitative PCR assay for the detection of Morganella morganii.
    Ferrario C, Ricci G, Borgo F, Fortina MG.
    Lett Appl Microbiol; 2012 Apr 31; 54(4):292-8. PubMed ID: 22251367
    [Abstract] [Full Text] [Related]

  • 26. Dynamic predictive model for growth of Salmonella enteritidis in egg yolk.
    Gumudavelli V, Subbiah J, Thippareddi H, Velugoti PR, Froning G.
    J Food Sci; 2007 Sep 31; 72(7):M254-62. PubMed ID: 17995649
    [Abstract] [Full Text] [Related]

  • 27. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I, Dussap CG, Lebert A.
    Int J Food Microbiol; 2005 Jul 25; 102(3):305-22. PubMed ID: 16014298
    [Abstract] [Full Text] [Related]

  • 28. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea.
    Yoon KS, Min KJ, Jung YJ, Kwon KY, Lee JK, Oh SW.
    Food Microbiol; 2008 Aug 25; 25(5):635-41. PubMed ID: 18541160
    [Abstract] [Full Text] [Related]

  • 29. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria.
    Lomarat P, Phanthong P, Wongsariya K, Chomnawang MT, Bunyapraphatsara N.
    Pak J Pharm Sci; 2013 May 25; 26(3):473-7. PubMed ID: 23625419
    [Abstract] [Full Text] [Related]

  • 30. PCR detection and identification of histamine-forming bacteria in filleted tuna fish samples.
    Ferrario C, Pegollo C, Ricci G, Borgo F, Fortina MG.
    J Food Sci; 2012 Feb 25; 77(2):M115-20. PubMed ID: 22251187
    [Abstract] [Full Text] [Related]

  • 31. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium.
    Tassou CC, Panagou EZ, Samaras FJ, Galiatsatou P, Mallidis CG.
    J Appl Microbiol; 2008 Jun 25; 104(6):1764-73. PubMed ID: 18298540
    [Abstract] [Full Text] [Related]

  • 32. Changes in histamine and microbiological analyses in fresh and frozen tuna muscle during temperature abuse.
    Economou V, Brett MM, Papadopoulou C, Frillingos S, Nichols T.
    Food Addit Contam; 2007 Aug 25; 24(8):820-32. PubMed ID: 17613069
    [Abstract] [Full Text] [Related]

  • 33. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.
    Ben Yaghlene H, Leguerinel I, Hamdi M, Mafart P.
    Int J Food Microbiol; 2009 Jul 31; 133(1-2):48-61. PubMed ID: 19447512
    [Abstract] [Full Text] [Related]

  • 34. Behavior of inactivation kinetics of Escherichia coli by dense phase carbon dioxide.
    Liao H, Zhang Y, Hu X, Liao X, Wu J.
    Int J Food Microbiol; 2008 Aug 15; 126(1-2):93-7. PubMed ID: 18565607
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food.
    Membré JM, Leporq B, Vialette M, Mettler E, Perrier L, Thuault D, Zwietering M.
    Int J Food Microbiol; 2005 Apr 15; 100(1-3):179-86. PubMed ID: 15854703
    [Abstract] [Full Text] [Related]

  • 37. Detection of Morganella morganii, a prolific histamine former, by the polymerase chain reaction assay with 16S rDNA-targeted primers.
    Kim SH, An H, Field KG, Wei CI, Velazquez JB, Ben-Gigirey B, Morrissey MT, Price RJ, Pitta TP.
    J Food Prot; 2003 Aug 15; 66(8):1385-92. PubMed ID: 12929824
    [Abstract] [Full Text] [Related]

  • 38. Response surface model for prediction of growth parameters from spores of Clostridium sporogenes under different experimental conditions.
    Dong Q, Tu K, Guo L, Li H, Zhao Y.
    Food Microbiol; 2007 Sep 15; 24(6):624-32. PubMed ID: 17418314
    [Abstract] [Full Text] [Related]

  • 39. Modeling Staphylococcus aureus growth and enterotoxin production in milk.
    Fujikawa H, Morozumi S.
    Food Microbiol; 2006 May 15; 23(3):260-7. PubMed ID: 16943012
    [Abstract] [Full Text] [Related]

  • 40. Modelling fungal growth using radial basis function neural networks: the case of the ascomycetous fungus Monascus ruber van Tieghem.
    Panagou EZ, Kodogiannis V, Nychas GJ.
    Int J Food Microbiol; 2007 Jul 15; 117(3):276-86. PubMed ID: 17521758
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 28.