These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. Li QZ, Yeh Y, Liu JJ, Feeney RE, Krishnan VV. J Chem Phys; 2006 May 28; 124(20):204702. PubMed ID: 16774359 [Abstract] [Full Text] [Related]
3. Influence of Adsorption Orientation on the Statistical Mechanics Model of Type I Antifreeze Protein: The Thermal Hysteresis Temperature. Li LF, Liang XX. J Phys Chem B; 2017 Oct 19; 121(41):9513-9517. PubMed ID: 28956610 [Abstract] [Full Text] [Related]
6. Superheating of ice crystals in antifreeze protein solutions. Celik Y, Graham LA, Mok YF, Bar M, Davies PL, Braslavsky I. Proc Natl Acad Sci U S A; 2010 Mar 23; 107(12):5423-8. PubMed ID: 20215465 [Abstract] [Full Text] [Related]
9. Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity. Can Ö, Holland NB. Biochemistry; 2013 Dec 03; 52(48):8745-52. PubMed ID: 24191717 [Abstract] [Full Text] [Related]
10. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment. Ba Y, Mao Y, Galdino L, Günsen Z. J Biol Phys; 2013 Jan 03; 39(1):131-44. PubMed ID: 23860838 [Abstract] [Full Text] [Related]
12. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. Duman JG. J Exp Biol; 2015 Jun 03; 218(Pt 12):1846-55. PubMed ID: 26085662 [Abstract] [Full Text] [Related]
13. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL. Cryobiology; 2010 Dec 03; 61(3):327-34. PubMed ID: 20977900 [Abstract] [Full Text] [Related]
14. Fish-Derived Antifreeze Proteins and Antifreeze Glycoprotein Exhibit a Different Ice-Binding Property with Increasing Concentration. Tsuda S, Yamauchi A, Khan NMU, Arai T, Mahatabuddin S, Miura A, Kondo H. Biomolecules; 2020 Mar 09; 10(3):. PubMed ID: 32182859 [Abstract] [Full Text] [Related]
15. Solution structure of a recombinant type I sculpin antifreeze protein. Kwan AH, Fairley K, Anderberg PI, Liew CW, Harding MM, Mackay JP. Biochemistry; 2005 Feb 15; 44(6):1980-8. PubMed ID: 15697223 [Abstract] [Full Text] [Related]
16. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H. FEBS J; 2014 Aug 15; 281(16):3576-90. PubMed ID: 24938370 [Abstract] [Full Text] [Related]
17. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry. Ramløv H, DeVries AL, Wilson PW. Cryo Letters; 2005 Aug 15; 26(2):73-84. PubMed ID: 15897959 [Abstract] [Full Text] [Related]
18. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins. Patel SN, Graether SP. Biochem Cell Biol; 2010 Apr 15; 88(2):223-9. PubMed ID: 20453925 [Abstract] [Full Text] [Related]