These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 18850694
21. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes. de Visser SP. Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865 [Abstract] [Full Text] [Related]
22. New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. Oda A, Yamaotsu N, Hirono S. J Comput Chem; 2005 Jun; 26(8):818-26. PubMed ID: 15812779 [Abstract] [Full Text] [Related]
23. Multireference ab initio quantum mechanics/molecular mechanics study on intermediates in the catalytic cycle of cytochrome P450(cam). Altun A, Kumar D, Neese F, Thiel W. J Phys Chem A; 2008 Dec 18; 112(50):12904-10. PubMed ID: 18543897 [Abstract] [Full Text] [Related]
24. Evidence for basic ferryls in cytochromes P450. Behan RK, Hoffart LM, Stone KL, Krebs C, Green MT. J Am Chem Soc; 2006 Sep 06; 128(35):11471-4. PubMed ID: 16939270 [Abstract] [Full Text] [Related]
25. On the identity and reactivity patterns of the "second oxidant" of the T252A mutant of cytochrome P450cam in the oxidation of 5-methylenenylcamphor. Hirao H, Kumar D, Shaik S. J Inorg Biochem; 2006 Dec 06; 100(12):2054-68. PubMed ID: 17084458 [Abstract] [Full Text] [Related]
26. Evidence for stabilization of the low-spin state of cytochrome P450 due to shortening of the proximal heme bond. Segall MD, Payne MC, Ellis W, Tucker GT, Boyes N. Chem Res Toxicol; 1998 Aug 06; 11(8):962-6. PubMed ID: 9705759 [Abstract] [Full Text] [Related]
27. On the origin of the stabilization of the zwitterionic resting state of cysteine proteases: a theoretical study. Mladenovic M, Fink RF, Thiel W, Schirmeister T, Engels B. J Am Chem Soc; 2008 Jul 09; 130(27):8696-705. PubMed ID: 18557615 [Abstract] [Full Text] [Related]
28. Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases. Hersleth HP, Ryde U, Rydberg P, Görbitz CH, Andersson KK. J Inorg Biochem; 2006 Apr 09; 100(4):460-76. PubMed ID: 16510192 [Abstract] [Full Text] [Related]
29. The elusive oxidant species of cytochrome P450 enzymes: characterization by combined quantum mechanical/molecular mechanical (QM/MM) calculations. Schöneboom JC, Lin H, Reuter N, Thiel W, Cohen S, Ogliaro F, Shaik S. J Am Chem Soc; 2002 Jul 10; 124(27):8142-51. PubMed ID: 12095360 [Abstract] [Full Text] [Related]
30. Formation of the active species of cytochrome p450 by using iodosylbenzene: a case for spin-selective reactivity. Cho KB, Moreau Y, Kumar D, Rock DA, Jones JP, Shaik S. Chemistry; 2007 Jul 10; 13(14):4103-15. PubMed ID: 17367100 [Abstract] [Full Text] [Related]
31. Two-state reactivity, electromerism, tautomerism, and "surprise" isomers in the formation of compound II of the enzyme horseradish peroxidase from the principal species, compound I. Derat E, Shaik S. J Am Chem Soc; 2006 Jun 28; 128(25):8185-98. PubMed ID: 16787083 [Abstract] [Full Text] [Related]
32. Combined quantum mechanical/molecular mechanical study on the pentacoordinated ferric and ferrous cytochrome P450cam complexes. Altun A, Thiel W. J Phys Chem B; 2005 Jan 27; 109(3):1268-80. PubMed ID: 16851091 [Abstract] [Full Text] [Related]
33. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450. Jung C, Schünemann V, Lendzian F, Trautwein AX, Contzen J, Galander M, Böttger LH, Richter M, Barra AL. Biol Chem; 2005 Oct 27; 386(10):1043-53. PubMed ID: 16218876 [Abstract] [Full Text] [Related]
34. Rapid freeze-quench ENDOR study of chloroperoxidase compound I: the site of the radical. Kim SH, Perera R, Hager LP, Dawson JH, Hoffman BM. J Am Chem Soc; 2006 May 03; 128(17):5598-9. PubMed ID: 16637602 [Abstract] [Full Text] [Related]
35. QM/MM studies of the electronic structure of the compound I intermediate in cytochrome c peroxidase and ascorbate peroxidase. Bathelt CM, Mulholland AJ, Harvey JN. Dalton Trans; 2005 Nov 07; (21):3470-6. PubMed ID: 16234927 [Abstract] [Full Text] [Related]
36. Dynamic structures of phosphodiesterase-5 active site by combined molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations. Xiong Y, Lu HT, Zhan CG. J Comput Chem; 2008 Jun 07; 29(8):1259-67. PubMed ID: 18161687 [Abstract] [Full Text] [Related]
37. How is a metabolic intermediate formed in the mechanism-based inactivation of cytochrome P450 by using 1,1-dimethylhydrazine: hydrogen abstraction or nitrogen oxidation? Hirao H, Chuanprasit P, Cheong YY, Wang X. Chemistry; 2013 Jun 03; 19(23):7361-9. PubMed ID: 23592585 [Abstract] [Full Text] [Related]
38. On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II. Sicking W, Korth HG, de Groot H, Sustmann R. J Am Chem Soc; 2008 Jun 11; 130(23):7345-56. PubMed ID: 18479132 [Abstract] [Full Text] [Related]
39. QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. Bathelt CM, Mulholland AJ, Harvey JN. J Phys Chem A; 2008 Dec 18; 112(50):13149-56. PubMed ID: 18754597 [Abstract] [Full Text] [Related]
40. Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein. Chen H, Ikeda-Saito M, Shaik S. J Am Chem Soc; 2008 Nov 05; 130(44):14778-90. PubMed ID: 18847206 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]