These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


270 related items for PubMed ID: 18923828

  • 1. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation.
    Cheng JS, Qiao B, Yuan YJ.
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):327-38. PubMed ID: 18923828
    [Abstract] [Full Text] [Related]

  • 2. Inoculation-density-dependent responses and pathway shifts in Saccharomyces cerevisiae.
    Cheng JS, Ding MZ, Tian HC, Yuan YJ.
    Proteomics; 2009 Oct; 9(20):4704-13. PubMed ID: 19743421
    [Abstract] [Full Text] [Related]

  • 3. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS, Zhou X, Ding MZ, Yuan YJ.
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [Abstract] [Full Text] [Related]

  • 4. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions.
    Pham TK, Chong PK, Gan CS, Wright PC.
    J Proteome Res; 2006 Dec; 5(12):3411-9. PubMed ID: 17137342
    [Abstract] [Full Text] [Related]

  • 5. [Preliminary proteome analysis for Saccharomyces cerevisiae under different culturing conditions].
    Zhang HM, Yao SJ, Peng LF, Shimizu K.
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):398-402. PubMed ID: 15971613
    [Abstract] [Full Text] [Related]

  • 6. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L.
    Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076
    [Abstract] [Full Text] [Related]

  • 7. Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol.
    Cot M, Loret MO, François J, Benbadis L.
    FEMS Yeast Res; 2007 Jan 15; 7(1):22-32. PubMed ID: 17005001
    [Abstract] [Full Text] [Related]

  • 8. Proteomic evolution of a wine yeast during the first hours of fermentation.
    Salvadó Z, Chiva R, Rodríguez-Vargas S, Rández-Gil F, Mas A, Guillamón JM.
    FEMS Yeast Res; 2008 Nov 15; 8(7):1137-46. PubMed ID: 18503542
    [Abstract] [Full Text] [Related]

  • 9. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK, Wright PC.
    J Proteome Res; 2008 Nov 15; 7(11):4766-74. PubMed ID: 18808174
    [Abstract] [Full Text] [Related]

  • 10. Temporal quantitative proteomics of Saccharomyces cerevisiae in response to a nonlethal concentration of furfural.
    Lin FM, Tan Y, Yuan YJ.
    Proteomics; 2009 Dec 15; 9(24):5471-83. PubMed ID: 19834894
    [Abstract] [Full Text] [Related]

  • 11. Proteomic analysis of a distilling strain of Saccharomyces cerevisiae during industrial grain fermentation.
    Hansen R, Pearson SY, Brosnan JM, Meaden PG, Jamieson DJ.
    Appl Microbiol Biotechnol; 2006 Aug 15; 72(1):116-125. PubMed ID: 16820951
    [Abstract] [Full Text] [Related]

  • 12. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.
    Appl Environ Microbiol; 2005 Nov 15; 71(11):6831-7. PubMed ID: 16269716
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations.
    Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson L.
    Biotechnol Bioeng; 2005 Jun 20; 90(6):703-14. PubMed ID: 15812801
    [Abstract] [Full Text] [Related]

  • 15. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions.
    Pham TK, Wright PC.
    J Proteome Res; 2008 Feb 20; 7(2):515-25. PubMed ID: 18171021
    [Abstract] [Full Text] [Related]

  • 16. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E.
    Appl Microbiol Biotechnol; 2009 Jan 20; 81(5):951-60. PubMed ID: 18836715
    [Abstract] [Full Text] [Related]

  • 17. Transcriptomic and proteomic insights of the wine yeast biomass propagation process.
    Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E.
    FEMS Yeast Res; 2010 Nov 20; 10(7):870-84. PubMed ID: 20738407
    [Abstract] [Full Text] [Related]

  • 18. Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics.
    Ding MZ, Tian HC, Cheng JS, Yuan YJ.
    J Biotechnol; 2009 Dec 20; 144(4):279-86. PubMed ID: 19808067
    [Abstract] [Full Text] [Related]

  • 19. Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2.
    Santos RM, Nogueira FC, Brasil AA, Carvalho PC, Leprevost FV, Domont GB, Eleutherio EC.
    J Proteomics; 2017 Jan 16; 151():114-121. PubMed ID: 27576599
    [Abstract] [Full Text] [Related]

  • 20. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production.
    Guo ZP, Zhang L, Ding ZY, Wang ZX, Shi GY.
    Appl Microbiol Biotechnol; 2009 Feb 16; 82(2):287-92. PubMed ID: 19018525
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.