These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


356 related items for PubMed ID: 18930011

  • 1. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity.
    Matsushika A, Sawayama S.
    J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH, Kodaki T, Park YC, Seo JH.
    J Biotechnol; 2012 Apr 30; 158(4):184-91. PubMed ID: 21699927
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A, Sawayama S.
    Enzyme Microb Technol; 2011 May 06; 48(6-7):466-71. PubMed ID: 22113018
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S.
    Bioresour Technol; 2009 Apr 06; 100(8):2392-8. PubMed ID: 19128960
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM, Saimura M, Kodaki T.
    J Biotechnol; 2013 Jun 10; 165(3-4):153-6. PubMed ID: 23578809
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR, Kwee NR, Kim H, Jin YS.
    FEMS Yeast Res; 2013 May 10; 13(3):312-21. PubMed ID: 23398717
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae.
    Gárdonyi M, Jeppsson M, Lidén G, Gorwa-Grauslund MF, Hahn-Hägerdal B.
    Biotechnol Bioeng; 2003 Jun 30; 82(7):818-24. PubMed ID: 12701148
    [Abstract] [Full Text] [Related]

  • 17. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L.
    Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A.
    J Biotechnol; 2012 Apr 30; 158(4):203-10. PubMed ID: 21741417
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.