These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


108 related items for PubMed ID: 18931869

  • 21. Evaluation of robust wave image processing methods for magnetic resonance elastography.
    Li BN, Shan X, Xiang K, An N, Xu J, Huang W, Kobayashi E.
    Comput Biol Med; 2014 Nov; 54():100-8. PubMed ID: 25222934
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Mesh adaptation for improving elasticity reconstruction using the FEM inverse problem.
    Goksel O, Eskandari H, Salcudean SE.
    IEEE Trans Med Imaging; 2013 Feb; 32(2):408-18. PubMed ID: 23192522
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Application of numerical methods to elasticity imaging.
    Castaneda B, Ormachea J, Rodríguez P, Parker KJ.
    Mol Cell Biomech; 2013 Mar; 10(1):43-65. PubMed ID: 24010245
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. A constrained reconstruction technique of hyperelasticity parameters for breast cancer assessment.
    Mehrabian H, Campbell G, Samani A.
    Phys Med Biol; 2010 Dec 21; 55(24):7489-508. PubMed ID: 21098922
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J, Maleke C, Konofagou EE.
    Phys Med Biol; 2009 Jun 07; 54(11):3579-94. PubMed ID: 19454785
    [Abstract] [Full Text] [Related]

  • 34. In vivo dynamic optical coherence elastography using a ring actuator.
    Kennedy BF, Hillman TR, McLaughlin RA, Quirk BC, Sampson DD.
    Opt Express; 2009 Nov 23; 17(24):21762-72. PubMed ID: 19997419
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Ultrasound elastography: a dynamic programming approach.
    Rivaz H, Boctor E, Foroughi P, Zellars R, Fichtinger G, Hager G.
    IEEE Trans Med Imaging; 2008 Oct 23; 27(10):1373-7. PubMed ID: 18815089
    [Abstract] [Full Text] [Related]

  • 37. Modality independent elastography (MIE): a new approach to elasticity imaging.
    Washington CW, Miga MI.
    IEEE Trans Med Imaging; 2004 Sep 23; 23(9):1117-28. PubMed ID: 15377121
    [Abstract] [Full Text] [Related]

  • 38. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force.
    Lee KH, Szajewski BA, Hah Z, Parker KJ, Maniatty AM.
    Int J Numer Method Biomed Eng; 2012 Sep 23; 28(6-7):678-96. PubMed ID: 25364845
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography.
    Tang S, Sabonghy EP, Chaudhry A, Shajudeen PS, Islam MT, Kim N, Cabrera FJ, Reddy JN, Tasciotti E, Righetti R.
    IEEE Trans Med Imaging; 2018 Dec 23; 37(12):2704-2717. PubMed ID: 29994472
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.