These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


602 related items for PubMed ID: 18945216

  • 1. Direct interaction of a small-molecule modulator with G551D-CFTR, a cystic fibrosis-causing mutation associated with severe disease.
    Pasyk S, Li C, Ramjeesingh M, Bear CE.
    Biochem J; 2009 Feb 15; 418(1):185-90. PubMed ID: 18945216
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein.
    Melin P, Thoreau V, Norez C, Bilan F, Kitzis A, Becq F.
    Biochem Pharmacol; 2004 Jun 15; 67(12):2187-96. PubMed ID: 15163550
    [Abstract] [Full Text] [Related]

  • 4. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.
    Ramjeesingh M, Ugwu F, Stratford FL, Huan LJ, Li C, Bear CE.
    Biochem J; 2008 Jun 01; 412(2):315-21. PubMed ID: 18241200
    [Abstract] [Full Text] [Related]

  • 5. A chemical corrector modifies the channel function of F508del-CFTR.
    Kim Chiaw P, Wellhauser L, Huan LJ, Ramjeesingh M, Bear CE.
    Mol Pharmacol; 2010 Sep 01; 78(3):411-8. PubMed ID: 20501743
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG, Sohma Y, Li M, Hwang TC.
    J Gen Physiol; 2007 Apr 01; 129(4):285-98. PubMed ID: 17353351
    [Abstract] [Full Text] [Related]

  • 8. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator).
    Ramjeesingh M, Li C, Garami E, Huan LJ, Galley K, Wang Y, Bear CE.
    Biochemistry; 1999 Feb 02; 38(5):1463-8. PubMed ID: 9931011
    [Abstract] [Full Text] [Related]

  • 9. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer.
    Stratford FL, Ramjeesingh M, Cheung JC, Huan LJ, Bear CE.
    Biochem J; 2007 Jan 15; 401(2):581-6. PubMed ID: 16989640
    [Abstract] [Full Text] [Related]

  • 10. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK, Ju M, Sheppard DN.
    Mol Membr Biol; 2008 Sep 15; 25(6-7):528-38. PubMed ID: 18989824
    [Abstract] [Full Text] [Related]

  • 11. Regulatory domain phosphorylation to distinguish the mechanistic basis underlying acute CFTR modulators.
    Pyle LC, Ehrhardt A, Mitchell LH, Fan L, Ren A, Naren AP, Li Y, Clancy JP, Bolger GB, Sorscher EJ, Rowe SM.
    Am J Physiol Lung Cell Mol Physiol; 2011 Oct 15; 301(4):L587-97. PubMed ID: 21724857
    [Abstract] [Full Text] [Related]

  • 12. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating.
    Xu LN, Na WL, Liu X, Hou SG, Lin S, Yang H, Ma TH.
    Clin Exp Pharmacol Physiol; 2008 Aug 15; 35(8):878-83. PubMed ID: 18430055
    [Abstract] [Full Text] [Related]

  • 13. Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy.
    Kim Chiaw P, Eckford PD, Bear CE.
    Essays Biochem; 2011 Sep 07; 50(1):233-48. PubMed ID: 21967060
    [Abstract] [Full Text] [Related]

  • 14. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
    Kerem E.
    Pediatr Pulmonol; 2005 Sep 07; 40(3):183-96. PubMed ID: 15880796
    [Abstract] [Full Text] [Related]

  • 15. ATPase assay of purified, reconstituted CFTR protein.
    Kogan I, Ramjeesingh M, Bear CE.
    J Cyst Fibros; 2004 Aug 07; 3 Suppl 2():133-4. PubMed ID: 15463945
    [Abstract] [Full Text] [Related]

  • 16. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone.
    Scott-Ward TS, Amaral MD.
    FEBS J; 2009 Dec 07; 276(23):7097-109. PubMed ID: 19878303
    [Abstract] [Full Text] [Related]

  • 17. [Butyl-p-hydroxybenzoate stimulates cystic fibrosis transmembrane conductance regulator Cl- transport].
    Ge H, Hou TT, Sun JJ, Yang H.
    Yao Xue Xue Bao; 2009 Jan 07; 44(1):32-7. PubMed ID: 19350818
    [Abstract] [Full Text] [Related]

  • 18. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation.
    Cormet-Boyaka E, Jablonsky M, Naren AP, Jackson PL, Muccio DD, Kirk KL.
    Proc Natl Acad Sci U S A; 2004 May 25; 101(21):8221-6. PubMed ID: 15141088
    [Abstract] [Full Text] [Related]

  • 19. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability.
    Clancy JP, Hong JS, Bebök Z, King SA, Demolombe S, Bedwell DM, Sorscher EJ.
    Biochemistry; 1998 Oct 27; 37(43):15222-30. PubMed ID: 9790686
    [Abstract] [Full Text] [Related]

  • 20. Purinergic signaling underlies CFTR control of human airway epithelial cell volume.
    Braunstein GM, Zsembery A, Tucker TA, Schwiebert EM.
    J Cyst Fibros; 2004 Jun 27; 3(2):99-117. PubMed ID: 15463893
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.