These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
297 related items for PubMed ID: 18951411
1. Interactions of different inhibitors with active-site aspartyl residues of HIV-1 protease and possible relevance to pepsin. Sayer JM, Louis JM. Proteins; 2009 May 15; 75(3):556-68. PubMed ID: 18951411 [Abstract] [Full Text] [Related]
2. Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease. Sayer JM, Liu F, Ishima R, Weber IT, Louis JM. J Biol Chem; 2008 May 09; 283(19):13459-70. PubMed ID: 18281688 [Abstract] [Full Text] [Related]
3. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters. Shen CH, Wang YF, Kovalevsky AY, Harrison RW, Weber IT. FEBS J; 2010 Sep 09; 277(18):3699-714. PubMed ID: 20695887 [Abstract] [Full Text] [Related]
4. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. Liu F, Kovalevsky AY, Tie Y, Ghosh AK, Harrison RW, Weber IT. J Mol Biol; 2008 Aug 01; 381(1):102-15. PubMed ID: 18597780 [Abstract] [Full Text] [Related]
5. Discovery of Novel HIV Protease Inhibitors Using Modern Computational Techniques. Okafor SN, Angsantikul P, Ahmed H. Int J Mol Sci; 2022 Oct 12; 23(20):. PubMed ID: 36293006 [Abstract] [Full Text] [Related]
6. Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses. Wang RG, Zhang HX, Zheng QC. Phys Chem Chem Phys; 2020 Feb 26; 22(8):4464-4480. PubMed ID: 32057044 [Abstract] [Full Text] [Related]
7. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors. Tie Y, Wang YF, Boross PI, Chiu TY, Ghosh AK, Tozser J, Louis JM, Harrison RW, Weber IT. Protein Sci; 2012 Mar 26; 21(3):339-50. PubMed ID: 22238126 [Abstract] [Full Text] [Related]
8. Analysis of CYP3A4-HIV-1 protease drugs interactions by computational methods for Highly Active Antiretroviral Therapy in HIV/AIDS. Jayakanthan M, Chandrasekar S, Muthukumaran J, Mathur PP. J Mol Graph Model; 2010 Jan 26; 28(5):455-63. PubMed ID: 19931478 [Abstract] [Full Text] [Related]
9. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G, Steinbrecher T, Papadopoulos MG. J Chem Inf Model; 2013 Aug 26; 53(8):2141-53. PubMed ID: 23834142 [Abstract] [Full Text] [Related]
10. GRL-0519, a novel oxatricyclic ligand-containing nonpeptidic HIV-1 protease inhibitor (PI), potently suppresses replication of a wide spectrum of multi-PI-resistant HIV-1 variants in vitro. Amano M, Tojo Y, Salcedo-Gómez PM, Campbell JR, Das D, Aoki M, Xu CX, Rao KV, Ghosh AK, Mitsuya H. Antimicrob Agents Chemother; 2013 May 26; 57(5):2036-46. PubMed ID: 23403426 [Abstract] [Full Text] [Related]
11. High-performance liquid chromatography assay for the determination of the HIV-protease inhibitor tipranavir in human plasma in combination with nine other antiretroviral medications. Choi SO, Rezk NL, Kashuba AD. J Pharm Biomed Anal; 2007 Mar 12; 43(4):1562-7. PubMed ID: 17236737 [Abstract] [Full Text] [Related]
12. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Yu Y, Wang J, Shao Q, Shi J, Zhu W. Sci Rep; 2015 May 27; 5():10517. PubMed ID: 26012849 [Abstract] [Full Text] [Related]
13. Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs. Tie Y, Boross PI, Wang YF, Gaddis L, Liu F, Chen X, Tozser J, Harrison RW, Weber IT. FEBS J; 2005 Oct 27; 272(20):5265-77. PubMed ID: 16218957 [Abstract] [Full Text] [Related]
15. Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant. Todd MJ, Luque I, Velázquez-Campoy A, Freire E. Biochemistry; 2000 Oct 03; 39(39):11876-83. PubMed ID: 11009599 [Abstract] [Full Text] [Related]
16. Structural and thermodynamic basis of amprenavir/darunavir and atazanavir resistance in HIV-1 protease with mutations at residue 50. Mittal S, Bandaranayake RM, King NM, Prabu-Jeyabalan M, Nalam MN, Nalivaika EA, Yilmaz NK, Schiffer CA. J Virol; 2013 Apr 03; 87(8):4176-84. PubMed ID: 23365446 [Abstract] [Full Text] [Related]
17. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. Wittayanarakul K, Aruksakunwong O, Sompornpisut P, Sanghiran-Lee V, Parasuk V, Pinitglang S, Hannongbua S. J Chem Inf Model; 2005 Apr 03; 45(2):300-8. PubMed ID: 15807491 [Abstract] [Full Text] [Related]
18. Structural analysis of an HIV-1 protease I47A mutant resistant to the protease inhibitor lopinavir. Kagan RM, Shenderovich MD, Heseltine PN, Ramnarayan K. Protein Sci; 2005 Jul 03; 14(7):1870-8. PubMed ID: 15937277 [Abstract] [Full Text] [Related]
19. Simultaneous determination of five HIV protease inhibitors nelfinavir, indinavir, ritonavir, saquinavir and amprenavir in human plasma by LC/MS/MS. Chi J, Jayewardene AL, Stone JA, Motoya T, Aweeka FT. J Pharm Biomed Anal; 2002 Oct 15; 30(3):675-84. PubMed ID: 12367693 [Abstract] [Full Text] [Related]
20. Exploring molecular mechanism of allosteric inhibitor to relieve drug resistance of multiple mutations in HIV-1 protease by enhanced conformational sampling. Chen J, Peng C, Wang J, Zhu W. Proteins; 2018 Dec 15; 86(12):1294-1305. PubMed ID: 30260044 [Abstract] [Full Text] [Related] Page: [Next] [New Search]