These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 18956030
1. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Collman JP, Decréau RA. Chem Commun (Camb); 2008 Nov 07; (41):5065-76. PubMed ID: 18956030 [Abstract] [Full Text] [Related]
2. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes. Liu JG, Naruta Y, Tani F. Chemistry; 2007 Nov 07; 13(22):6365-78. PubMed ID: 17503416 [Abstract] [Full Text] [Related]
3. Spectroscopic evidence for a heme-superoxide/Cu(I) intermediate in a functional model of cytochrome c oxidase. Collman JP, Sunderland CJ, Berg KE, Vance MA, Solomon EI. J Am Chem Soc; 2003 Jun 04; 125(22):6648-9. PubMed ID: 12769571 [Abstract] [Full Text] [Related]
4. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase. Liu JG, Naruta Y, Tani F, Chishiro T, Tachi Y. Chem Commun (Camb); 2004 Jan 07; (1):120-1. PubMed ID: 14737361 [Abstract] [Full Text] [Related]
5. A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Collman JP, Devaraj NK, Decréau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CE. Science; 2007 Mar 16; 315(5818):1565-8. PubMed ID: 17363671 [Abstract] [Full Text] [Related]
6. A functional model of the cytochrome c oxidase active site: unique conversion of a heme-mu-peroxo-Cu(II) intermediate into heme- superoxo/Cu(I). Liu JG, Naruta Y, Tani F. Angew Chem Int Ed Engl; 2005 Mar 11; 44(12):1836-40. PubMed ID: 15723432 [No Abstract] [Full Text] [Related]
7. Model studies of the Cu(B) site of cytochrome c oxidase utilizing a Zn(II) complex containing an imidazole-phenol cross-linked ligand. Pesavento RP, Pratt DA, Jeffers J, van der Donk WA. Dalton Trans; 2006 Jul 21; (27):3326-37. PubMed ID: 16820845 [Abstract] [Full Text] [Related]
13. Comparative studies in series of cytochrome c oxidase models. Melin F, Trivella A, Lo M, Ruzié C, Hijazi I, Oueslati N, Wytko JA, Boitrel B, Boudon C, Hellwig P, Weiss J. J Inorg Biochem; 2012 Mar 21; 108():196-202. PubMed ID: 22197476 [Abstract] [Full Text] [Related]
18. Mimicking protein-protein electron transfer: voltammetry of Pseudomonas aeruginosa azurin and the Thermus thermophilus Cu(A) domain at omega-derivatized self-assembled-monolayer gold electrodes. Fujita K, Nakamura N, Ohno H, Leigh BS, Niki K, Gray HB, Richards JH. J Am Chem Soc; 2004 Nov 03; 126(43):13954-61. PubMed ID: 15506756 [Abstract] [Full Text] [Related]
19. Active site structure and redox processes of cytochrome c oxidase immobilised in a novel biomimetic lipid membrane on an electrode. Friedrich MG, Giebeta F, Naumann R, Knoll W, Ataka K, Heberle J, Hrabakova J, Murgida DH, Hildebrandt P. Chem Commun (Camb); 2004 Nov 07; (21):2376-7. PubMed ID: 15514773 [Abstract] [Full Text] [Related]
20. Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode. Ataka K, Richter B, Heberle J. J Phys Chem B; 2006 May 11; 110(18):9339-47. PubMed ID: 16671753 [Abstract] [Full Text] [Related] Page: [Next] [New Search]