These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
929 related items for PubMed ID: 18973938
1. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Yu H, VandeVord PJ, Mao L, Matthew HW, Wooley PH, Yang SY. Biomaterials; 2009 Feb; 30(4):508-17. PubMed ID: 18973938 [Abstract] [Full Text] [Related]
2. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. Yu H, Vandevord PJ, Gong W, Wu B, Song Z, Matthew HW, Wooley PH, Yang SY. J Orthop Res; 2008 Aug; 26(8):1147-52. PubMed ID: 18327810 [Abstract] [Full Text] [Related]
3. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A, Eblenkamp M, Gomes M, Reis RL, Kirkpatrick CJ. Biomaterials; 2009 Feb; 30(4):526-34. PubMed ID: 18977026 [Abstract] [Full Text] [Related]
4. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL. Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [Abstract] [Full Text] [Related]
5. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques. Roh JD, Brennan MP, Lopez-Soler RI, Fong PM, Goyal A, Dardik A, Breuer CK. J Pediatr Surg; 2007 Jan; 42(1):198-202. PubMed ID: 17208565 [Abstract] [Full Text] [Related]
6. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related]
7. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X. J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [Abstract] [Full Text] [Related]
8. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098 [Abstract] [Full Text] [Related]
9. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Santos MI, Unger RE, Sousa RA, Reis RL, Kirkpatrick CJ. Biomaterials; 2009 Sep; 30(26):4407-15. PubMed ID: 19487022 [Abstract] [Full Text] [Related]
10. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [Abstract] [Full Text] [Related]
14. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A, Finkenzeller G, Elçin AE, Stark GB, Elçin YM. J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [Abstract] [Full Text] [Related]
15. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Santos MI, Tuzlakoglu K, Fuchs S, Gomes ME, Peters K, Unger RE, Piskin E, Reis RL, Kirkpatrick CJ. Biomaterials; 2008 Nov; 29(32):4306-13. PubMed ID: 18706689 [Abstract] [Full Text] [Related]
16. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, Hofmann A, Motta A, Migliaresi C, Kirkpatrick CJ. Biomaterials; 2009 Mar; 30(7):1329-38. PubMed ID: 19091396 [Abstract] [Full Text] [Related]
17. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Porter JR, Henson A, Popat KC. Biomaterials; 2009 Feb; 30(5):780-8. PubMed ID: 19012962 [Abstract] [Full Text] [Related]
18. Evaluation of a tissue-engineered membrane-cell construct for guided bone regeneration. Schantz JT, Hutmacher DW, Ng KW, Khor HL, Lim MT, Teoh SH. Int J Oral Maxillofac Implants; 2002 Feb; 17(2):161-74. PubMed ID: 11958398 [Abstract] [Full Text] [Related]
19. Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo. Schumann P, Tavassol F, Lindhorst D, Stuehmer C, Bormann KH, Kampmann A, Mülhaupt R, Laschke MW, Menger MD, Gellrich NC, Rücker M. Microvasc Res; 2009 Sep; 78(2):180-90. PubMed ID: 19540853 [Abstract] [Full Text] [Related]
20. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ. Biomaterials; 2007 Sep; 28(27):3965-76. PubMed ID: 17582491 [Abstract] [Full Text] [Related] Page: [Next] [New Search]