These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


531 related items for PubMed ID: 18974897

  • 1. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons.
    Vivas A, Moreno B, del Val C, Macci C, Masciandaro G, Benitez E.
    J Environ Monit; 2008 Nov; 10(11):1287-96. PubMed ID: 18974897
    [Abstract] [Full Text] [Related]

  • 2. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y.
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [Abstract] [Full Text] [Related]

  • 3. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke.
    Martínez-Iñigo MJ, Pérez-Sanz A, Ortiz I, Alonso J, Alarcón R, García P, Lobo MC.
    Chemosphere; 2009 Jun; 75(10):1376-81. PubMed ID: 19345981
    [Abstract] [Full Text] [Related]

  • 4. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils.
    Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H.
    Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305
    [Abstract] [Full Text] [Related]

  • 5. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.
    Palmroth MR, Koskinen PE, Kaksonen AH, Münster U, Pichtel J, Puhakka JA.
    Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705
    [Abstract] [Full Text] [Related]

  • 6. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment.
    Gremion F, Chatzinotas A, Kaufmann K, Von Sigler W, Harms H.
    FEMS Microbiol Ecol; 2004 May 01; 48(2):273-83. PubMed ID: 19712410
    [Abstract] [Full Text] [Related]

  • 7. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils.
    Labbé D, Margesin R, Schinner F, Whyte LG, Greer CW.
    FEMS Microbiol Ecol; 2007 Feb 01; 59(2):466-75. PubMed ID: 17313586
    [Abstract] [Full Text] [Related]

  • 8. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results?
    Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC.
    J Microbiol Methods; 2007 Jun 01; 69(3):470-9. PubMed ID: 17407797
    [Abstract] [Full Text] [Related]

  • 9. Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil: the reclamation effect of vermicomposted olive wastes.
    Moreno B, Vivas A, Nogales R, Macci C, Masciandaro G, Benitez E.
    Environ Sci Pollut Res Int; 2009 May 01; 16(3):253-64. PubMed ID: 18751749
    [Abstract] [Full Text] [Related]

  • 10. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils.
    Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M.
    J Biosci Bioeng; 2009 Nov 01; 108(5):400-7. PubMed ID: 19804864
    [Abstract] [Full Text] [Related]

  • 11. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.
    Frey B, Pesaro M, Rüdt A, Widmer F.
    Environ Microbiol; 2008 Jun 01; 10(6):1433-49. PubMed ID: 18279346
    [Abstract] [Full Text] [Related]

  • 12. Significance of treated agrowaste residue and autochthonous inoculates (Arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals.
    Azcón R, Medina A, Roldán A, Biró B, Vivas A.
    Chemosphere; 2009 Apr 01; 75(3):327-34. PubMed ID: 19185328
    [Abstract] [Full Text] [Related]

  • 13. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil.
    Kirk JL, Klironomos JN, Lee H, Trevors JT.
    Environ Pollut; 2005 Feb 01; 133(3):455-65. PubMed ID: 15519721
    [Abstract] [Full Text] [Related]

  • 14. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils.
    Supaphol S, Panichsakpatana S, Trakulnaleamsai S, Tungkananuruk N, Roughjanajirapa P, O'Donnell AG.
    J Microbiol Methods; 2006 Jun 01; 65(3):432-41. PubMed ID: 16226327
    [Abstract] [Full Text] [Related]

  • 15. Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray.
    Neufeld JD, Mohn WW, de Lorenzo V.
    Environ Microbiol; 2006 Jan 01; 8(1):126-40. PubMed ID: 16343328
    [Abstract] [Full Text] [Related]

  • 16. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts.
    Hinojosa MB, Carreira JA, García-Ruíz R, Dick RP.
    J Environ Qual; 2005 Jan 01; 34(5):1789-800. PubMed ID: 16151231
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils.
    Guo Z, Megharaj M, Beer M, Ming H, Mahmudur Rahman M, Wu W, Naidu R.
    Bioresour Technol; 2009 Sep 01; 100(17):3831-6. PubMed ID: 19349173
    [Abstract] [Full Text] [Related]

  • 19. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site.
    Hendrickx B, Junca H, Vosahlova J, Lindner A, Rüegg I, Bucheli-Witschel M, Faber F, Egli T, Mau M, Schlömann M, Brennerova M, Brenner V, Pieper DH, Top EM, Dejonghe W, Bastiaens L, Springael D.
    J Microbiol Methods; 2006 Feb 01; 64(2):250-65. PubMed ID: 15949858
    [Abstract] [Full Text] [Related]

  • 20. Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons.
    Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W, Springael D.
    FEMS Microbiol Ecol; 2005 Feb 01; 51(3):375-88. PubMed ID: 16329885
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.