These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
514 related items for PubMed ID: 18976793
1. Enzymatic oxidation of manganese ions catalysed by laccase. Gorbacheva M, Morozova O, Shumakovich G, Streltsov A, Shleev S, Yaropolov A. Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793 [Abstract] [Full Text] [Related]
2. Intramolecular electron transfer in laccases. Farver O, Wherland S, Koroleva O, Loginov DS, Pecht I. FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996 [Abstract] [Full Text] [Related]
3. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Tadesse MA, D'Annibale A, Galli C, Gentili P, Sergi F. Org Biomol Chem; 2008 Mar 07; 6(5):868-78. PubMed ID: 18292878 [Abstract] [Full Text] [Related]
4. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. Lahtinen M, Kruus K, Heinonen P, Sipilä J. J Agric Food Chem; 2009 Sep 23; 57(18):8357-65. PubMed ID: 19702333 [Abstract] [Full Text] [Related]
5. Characterization of two new multiforms of Trametes pubescens laccase. Shleev S, Nikitina O, Christenson A, Reimann CT, Yaropolov AI, Ruzgas T, Gorton L. Bioorg Chem; 2007 Feb 23; 35(1):35-49. PubMed ID: 16989887 [Abstract] [Full Text] [Related]
6. Laccase-catalysed iodide oxidation in presence of methyl syringate. Kulys J, Bratkovskaja I, Vidziunaite R. Biotechnol Bioeng; 2005 Oct 05; 92(1):124-8. PubMed ID: 16080184 [Abstract] [Full Text] [Related]
7. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol. Kurniawati S, Nicell JA. Biotechnol Prog; 2009 Oct 05; 25(3):763-73. PubMed ID: 19496113 [Abstract] [Full Text] [Related]
8. Laccase electrode for direct electrocatalytic reduction of O2 to H2O with high-operational stability and resistance to chloride inhibition. Vaz-Dominguez C, Campuzano S, Rüdiger O, Pita M, Gorbacheva M, Shleev S, Fernandez VM, De Lacey AL. Biosens Bioelectron; 2008 Dec 01; 24(4):531-7. PubMed ID: 18585029 [Abstract] [Full Text] [Related]
9. Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Haibo Z, Yinglong Z, Feng H, Peiji G, Jiachuan C. Biotechnol Lett; 2009 Jun 01; 31(6):837-43. PubMed ID: 19221878 [Abstract] [Full Text] [Related]
10. Kinetic and theoretical comprehension of diverse rate laws and reactivity gaps in Coriolus hirsutus laccase-catalyzed oxidation of acido and cyclometalated Ru(II) complexes. Kurzeev SA, Vilesov AS, Fedorova TV, Stepanova EV, Koroleva OV, Bukh C, Bjerrum MJ, Kurnikov IV, Ryabov AD. Biochemistry; 2009 Jun 02; 48(21):4519-27. PubMed ID: 19351176 [Abstract] [Full Text] [Related]
11. Direct electron transfer reactions of laccases from different origins on carbon electrodes. Shleev S, Jarosz-Wilkolazka A, Khalunina A, Morozova O, Yaropolov A, Ruzgas T, Gorton L. Bioelectrochemistry; 2005 Sep 02; 67(1):115-24. PubMed ID: 15941673 [Abstract] [Full Text] [Related]
12. Direct electron transfer of Trametes hirsuta laccase adsorbed at unmodified nanoporous gold electrodes. Salaj-Kosla U, Pöller S, Schuhmann W, Shleev S, Magner E. Bioelectrochemistry; 2013 Jun 02; 91():15-20. PubMed ID: 23274541 [Abstract] [Full Text] [Related]
13. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC. Biosens Bioelectron; 2008 Mar 14; 23(8):1229-35. PubMed ID: 18096378 [Abstract] [Full Text] [Related]
14. Laccase catalysed oxidation of syringic acid: calorimetric determination of kinetic parameters. Volkova N, Ibrahim V, Hatti-Kaul R. Enzyme Microb Technol; 2012 Apr 05; 50(4-5):233-7. PubMed ID: 22418263 [Abstract] [Full Text] [Related]
15. Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase. Sosna M, Stoica L, Wright E, Kilburn JD, Schuhmann W, Bartlett PN. Phys Chem Chem Phys; 2012 Sep 14; 14(34):11882-5. PubMed ID: 22836927 [Abstract] [Full Text] [Related]
16. Investigation of biosensor signal bioamplification: comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode. ElKaoutit M, Naranjo-Rodriguez I, Temsamani KR, Domínguez M, Hidalgo-Hidalgo de Cisneros JL. Talanta; 2008 Jun 15; 75(5):1348-55. PubMed ID: 18585223 [Abstract] [Full Text] [Related]
17. Role of 1-hydroxybenzotriazole in oxidation by laccase from Trametes versicolor. Kinetic analysis of the laccase-1-hydroxybenzotriazole couple. Hirai H, Shibata H, Kawai S, Nishida T. FEMS Microbiol Lett; 2006 Dec 15; 265(1):56-9. PubMed ID: 17038050 [Abstract] [Full Text] [Related]
18. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Frasconi M, Favero G, Boer H, Koivula A, Mazzei F. Biochim Biophys Acta; 2010 Apr 15; 1804(4):899-908. PubMed ID: 20056172 [Abstract] [Full Text] [Related]
19. Electrochemical characterization of purified Rhus vernicifera laccase: voltammetric evidence for a sequential four-electron transfer. Johnson DL, Thompson JL, Brinkmann SM, Schuller KA, Martin LL. Biochemistry; 2003 Sep 02; 42(34):10229-37. PubMed ID: 12939151 [Abstract] [Full Text] [Related]
20. Bioelectrocatalytic reduction of oxygen at gold nanoparticles modified with laccase. Krikstolaityte V, Barrantes A, Ramanavicius A, Arnebrant T, Shleev S, Ruzgas T. Bioelectrochemistry; 2014 Feb 02; 95():1-6. PubMed ID: 24134999 [Abstract] [Full Text] [Related] Page: [Next] [New Search]