These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


364 related items for PubMed ID: 18977081

  • 1. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars.
    Kastner JR, Miller J, Das KC.
    J Hazard Mater; 2009 May 30; 164(2-3):1420-7. PubMed ID: 18977081
    [Abstract] [Full Text] [Related]

  • 2. Catalytic ozonation of ammonia using biomass char and wood fly ash.
    Kastner JR, Miller J, Kolar P, Das KC.
    Chemosphere; 2009 May 30; 75(6):739-44. PubMed ID: 19232426
    [Abstract] [Full Text] [Related]

  • 3. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.
    Mohan D, Rajput S, Singh VK, Steele PH, Pittman CU.
    J Hazard Mater; 2011 Apr 15; 188(1-3):319-33. PubMed ID: 21354700
    [Abstract] [Full Text] [Related]

  • 4. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H.
    J Colloid Interface Sci; 2007 Jun 01; 310(1):57-73. PubMed ID: 17331527
    [Abstract] [Full Text] [Related]

  • 5. Preparation of high adsorption capacity bio-chars from waste biomass.
    Liu WJ, Zeng FX, Jiang H, Zhang XS.
    Bioresour Technol; 2011 Sep 01; 102(17):8247-52. PubMed ID: 21724386
    [Abstract] [Full Text] [Related]

  • 6. Fly-ash products from biomass co-combustion for VOC control.
    Kwong CW, Chao CY.
    Bioresour Technol; 2010 Feb 01; 101(3):1075-81. PubMed ID: 19773158
    [Abstract] [Full Text] [Related]

  • 7. Tar reduction in pyrolysis vapours from biomass over a hot char bed.
    Gilbert P, Ryu C, Sharifi V, Swithenbank J.
    Bioresour Technol; 2009 Dec 01; 100(23):6045-51. PubMed ID: 19604685
    [Abstract] [Full Text] [Related]

  • 8. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution.
    Liu P, Liu WJ, Jiang H, Chen JJ, Li WW, Yu HQ.
    Bioresour Technol; 2012 Oct 01; 121():235-40. PubMed ID: 22858491
    [Abstract] [Full Text] [Related]

  • 9. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol.
    Alvarez PM, Beltrán FJ, Gómez-Serrano V, Jaramillo J, Rodríguez EM.
    Water Res; 2004 Apr 01; 38(8):2155-65. PubMed ID: 15087197
    [Abstract] [Full Text] [Related]

  • 10. Advanced treatment of benzothiazole contaminated waters: comparison of O3, AC, and O3/AC processes.
    Valdés H, Zaror CA.
    Water Sci Technol; 2005 Apr 01; 52(10-11):281-8. PubMed ID: 16459802
    [Abstract] [Full Text] [Related]

  • 11. Sawdust pellets from coniferous species as adsorbents for NO2 removal.
    Pietrzak R.
    Bioresour Technol; 2010 Feb 01; 101(3):907-13. PubMed ID: 19783429
    [Abstract] [Full Text] [Related]

  • 12. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds.
    Bandosz TJ, Petit C.
    J Colloid Interface Sci; 2009 Oct 15; 338(2):329-45. PubMed ID: 19615690
    [Abstract] [Full Text] [Related]

  • 13. 2,4-D adsorption to biochars: effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data.
    Kearns JP, Wellborn LS, Summers RS, Knappe DR.
    Water Res; 2014 Oct 01; 62():20-8. PubMed ID: 24934321
    [Abstract] [Full Text] [Related]

  • 14. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil.
    Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM.
    J Agric Food Chem; 2011 Mar 23; 59(6):2501-10. PubMed ID: 21348519
    [Abstract] [Full Text] [Related]

  • 15. Treatment of cyanide effluents by oxidation and adsorption in batch and column studies.
    Yazici EY, Deveci H, Alp I.
    J Hazard Mater; 2009 Jul 30; 166(2-3):1362-6. PubMed ID: 19153009
    [Abstract] [Full Text] [Related]

  • 16. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.
    Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H.
    Chemosphere; 2016 Aug 30; 156():56-68. PubMed ID: 27160635
    [Abstract] [Full Text] [Related]

  • 17. Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures.
    Bernardo M, Lapa N, Gonçalves M, Mendes B, Pinto F, Fonseca I, Lopes H.
    J Hazard Mater; 2012 Jun 15; 219-220():196-202. PubMed ID: 22520075
    [Abstract] [Full Text] [Related]

  • 18. Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4.
    Guo J, Xu WS, Chen YL, Lua AC.
    J Colloid Interface Sci; 2005 Jan 15; 281(2):285-90. PubMed ID: 15571683
    [Abstract] [Full Text] [Related]

  • 19. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets.
    Hu Q, Yang H, Yao D, Zhu D, Wang X, Shao J, Chen H.
    Bioresour Technol; 2016 Jan 15; 200():521-7. PubMed ID: 26524250
    [Abstract] [Full Text] [Related]

  • 20. Select metal adsorption by activated carbon made from peanut shells.
    Wilson K, Yang H, Seo CW, Marshall WE.
    Bioresour Technol; 2006 Dec 15; 97(18):2266-70. PubMed ID: 16364633
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.