These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 18977438

  • 1. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti.
    Cooper DM, Chamberlain CM, Lowenberger C.
    Insect Biochem Mol Biol; 2009 Jan; 39(1):47-54. PubMed ID: 18977438
    [Abstract] [Full Text] [Related]

  • 2. Knock-down of REL2, but not defensin A, augments Aedes aegypti susceptibility to Bacillus subtilis and Escherichia coli.
    Magalhaes T, Leandro DC, Ayres CF.
    Acta Trop; 2010 Feb; 113(2):167-73. PubMed ID: 19879852
    [Abstract] [Full Text] [Related]

  • 3. Characterization of Aedes Dredd: a novel initiator caspase from the yellow fever mosquito, Aedes aegypti.
    Cooper DM, Pio F, Thi EP, Theilmann D, Lowenberger C.
    Insect Biochem Mol Biol; 2007 Jun; 37(6):559-69. PubMed ID: 17517333
    [Abstract] [Full Text] [Related]

  • 4. Aedes Dronc: a novel ecdysone-inducible caspase in the yellow fever mosquito, Aedes aegypti.
    Cooper DM, Thi EP, Chamberlain CM, Pio F, Lowenberger C.
    Insect Mol Biol; 2007 Oct; 16(5):563-72. PubMed ID: 17725799
    [Abstract] [Full Text] [Related]

  • 5. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti.
    Wang S, Beerntsen BT.
    Insect Mol Biol; 2015 Jun; 24(3):293-310. PubMed ID: 25588548
    [Abstract] [Full Text] [Related]

  • 6. Identification of putative innate immune related genes from a cell line of the mosquito Aedes albopictus following bacterial challenge.
    Dixit R, Patole MS, Shouche YS.
    Innate Immun; 2011 Feb; 17(1):106-17. PubMed ID: 20123933
    [Abstract] [Full Text] [Related]

  • 7. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti).
    Telang A, Qayum AA, Parker A, Sacchetta BR, Byrnes GR.
    Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201
    [Abstract] [Full Text] [Related]

  • 8. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout.
    Bohbot J, Vogt RG.
    Insect Biochem Mol Biol; 2005 Sep; 35(9):961-79. PubMed ID: 15978998
    [Abstract] [Full Text] [Related]

  • 9. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti.
    Bartholomay LC, Fuchs JF, Cheng LL, Beck ET, Vizioli J, Lowenberger C, Christensen BM.
    Insect Mol Biol; 2004 Apr; 13(2):125-32. PubMed ID: 15056359
    [Abstract] [Full Text] [Related]

  • 10. Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti.
    Kim CH, Muturi EJ.
    J Insect Physiol; 2013 Jun; 59(6):604-10. PubMed ID: 23562781
    [Abstract] [Full Text] [Related]

  • 11. Functional characterization of two clip domain serine proteases in innate immune responses of Aedes aegypti.
    Wang HC, Wang QH, Bhowmick B, Li YX, Han Q.
    Parasit Vectors; 2021 Nov 24; 14(1):584. PubMed ID: 34819136
    [Abstract] [Full Text] [Related]

  • 12. Molecular and phylogenetic analysis of a novel family of fibrinogen-related proteins from mosquito Aedes albopictus cell line.
    Dixit R, Roy U, Patole MS, Shouche YS.
    Comput Biol Chem; 2008 Oct 24; 32(5):382-6. PubMed ID: 18706867
    [Abstract] [Full Text] [Related]

  • 13. Stage-specific expression of two actin genes in the yellow fever mosquito, Aedes aegypti.
    Vyazunova I, Lan Q.
    Insect Mol Biol; 2004 Jun 24; 13(3):241-9. PubMed ID: 15157225
    [Abstract] [Full Text] [Related]

  • 14. Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti.
    Hussain M, Walker T, O'Neill SL, Asgari S.
    Insect Biochem Mol Biol; 2013 Feb 24; 43(2):146-52. PubMed ID: 23202267
    [Abstract] [Full Text] [Related]

  • 15. Activation of immune-associated phospholipase A2 is functionally linked to Toll/Imd signal pathways in the red flour beetle, Tribolium castaneum.
    Shrestha S, Kim Y.
    Dev Comp Immunol; 2010 May 24; 34(5):530-7. PubMed ID: 20043940
    [Abstract] [Full Text] [Related]

  • 16. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development.
    Wu S, Zhang X, He Y, Shuai J, Chen X, Ling E.
    Dev Comp Immunol; 2010 Nov 24; 34(11):1191-8. PubMed ID: 20600274
    [Abstract] [Full Text] [Related]

  • 17. Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses.
    Hillyer JF, Christensen BM.
    J Histochem Cytochem; 2005 Jun 24; 53(6):689-98. PubMed ID: 15928318
    [Abstract] [Full Text] [Related]

  • 18. Analysis of bacteria-challenged wild silkmoth, Antheraea mylitta (lepidoptera) transcriptome reveals potential immune genes.
    Gandhe AS, Arunkumar KP, John SH, Nagaraju J.
    BMC Genomics; 2006 Jul 21; 7():184. PubMed ID: 16857061
    [Abstract] [Full Text] [Related]

  • 19. Profiling infection responses in the haemocytes of the mosquito, Aedes aegypti.
    Bartholomay LC, Mayhew GF, Fuchs JF, Rocheleau TA, Erickson SM, Aliota MT, Christensen BM.
    Insect Mol Biol; 2007 Dec 21; 16(6):761-76. PubMed ID: 18093005
    [Abstract] [Full Text] [Related]

  • 20. Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori.
    Cheng T, Zhao P, Liu C, Xu P, Gao Z, Xia Q, Xiang Z.
    Genomics; 2006 Mar 21; 87(3):356-65. PubMed ID: 16406194
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.