These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


291 related items for PubMed ID: 18977732

  • 1. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex.
    Smith GB, Heynen AJ, Bear MF.
    Philos Trans R Soc Lond B Biol Sci; 2009 Feb 12; 364(1515):357-67. PubMed ID: 18977732
    [Abstract] [Full Text] [Related]

  • 2. Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity.
    Bridi MCD, Hong S, Severin D, Moreno C, Contreras A, Kirkwood A.
    J Neurosci; 2024 Sep 04; 44(36):. PubMed ID: 39117456
    [Abstract] [Full Text] [Related]

  • 3. LTP and LTD vary with layer in rodent visual cortex.
    Daw N, Rao Y, Wang XF, Fischer Q, Yang Y.
    Vision Res; 2004 Dec 04; 44(28):3377-80. PubMed ID: 15536005
    [Abstract] [Full Text] [Related]

  • 4. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y, Inaba M, Yamada K, Kurotani T, Begum T, Reza F, Maruyama T, Komatsu Y.
    Eur J Neurosci; 2008 Aug 04; 28(4):730-43. PubMed ID: 18657180
    [Abstract] [Full Text] [Related]

  • 5. The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex.
    Cho KK, Khibnik L, Philpot BD, Bear MF.
    Proc Natl Acad Sci U S A; 2009 Mar 31; 106(13):5377-82. PubMed ID: 19276107
    [Abstract] [Full Text] [Related]

  • 6. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP, Lopez J, Bissette G, Roffwarg HP.
    Neurosci Lett; 2006 Jan 30; 393(2-3):131-5. PubMed ID: 16236445
    [Abstract] [Full Text] [Related]

  • 7. Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex.
    Jang HJ, Cho KH, Kim HS, Hahn SJ, Kim MS, Rhie DJ.
    J Neurophysiol; 2009 Jan 30; 101(1):269-75. PubMed ID: 18971296
    [Abstract] [Full Text] [Related]

  • 8. Forebrain NR2B overexpression enhancing fear acquisition and long-term potentiation in the lateral amygdala.
    Duan Y, Zhou S, Ma J, Yin P, Cao X.
    Eur J Neurosci; 2015 Sep 30; 42(5):2214-23. PubMed ID: 26118841
    [Abstract] [Full Text] [Related]

  • 9. Metabotropic glutamate receptor signaling is required for NMDA receptor-dependent ocular dominance plasticity and LTD in visual cortex.
    Sidorov MS, Kaplan ES, Osterweil EK, Lindemann L, Bear MF.
    Proc Natl Acad Sci U S A; 2015 Oct 13; 112(41):12852-7. PubMed ID: 26417096
    [Abstract] [Full Text] [Related]

  • 10. Essential role for a long-term depression mechanism in ocular dominance plasticity.
    Yoon BJ, Smith GB, Heynen AJ, Neve RL, Bear MF.
    Proc Natl Acad Sci U S A; 2009 Jun 16; 106(24):9860-5. PubMed ID: 19470483
    [Abstract] [Full Text] [Related]

  • 11. A model of bidirectional synaptic plasticity: from signaling network to channel conductance.
    Castellani GC, Quinlan EM, Bersani F, Cooper LN, Shouval HZ.
    Learn Mem; 2005 Jun 16; 12(4):423-32. PubMed ID: 16027175
    [Abstract] [Full Text] [Related]

  • 12. Timing-dependent LTP and LTD in mouse primary visual cortex following different visual deprivation models.
    Guo Y, Zhang W, Chen X, Fu J, Cheng W, Song D, Qu X, Yang Z, Zhao K.
    PLoS One; 2017 Jun 16; 12(5):e0176603. PubMed ID: 28520739
    [Abstract] [Full Text] [Related]

  • 13. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex.
    He HY, Hodos W, Quinlan EM.
    J Neurosci; 2006 Mar 15; 26(11):2951-5. PubMed ID: 16540572
    [Abstract] [Full Text] [Related]

  • 14. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex.
    Cooke SF, Bear MF.
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan 05; 369(1633):20130284. PubMed ID: 24298166
    [Abstract] [Full Text] [Related]

  • 15. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ, Hogsden JL, Dringenberg HC.
    Eur J Neurosci; 2007 Nov 05; 26(9):2576-84. PubMed ID: 17970743
    [Abstract] [Full Text] [Related]

  • 16. Rapid visual stimulation increases extrasynaptic glutamate receptor expression but not visual-evoked potentials in the adult rat primary visual cortex.
    Eckert MJ, Guévremont D, Williams JM, Abraham WC.
    Eur J Neurosci; 2013 Feb 05; 37(3):400-6. PubMed ID: 23373691
    [Abstract] [Full Text] [Related]

  • 17. Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio.
    Xu Z, Chen RQ, Gu QH, Yan JZ, Wang SH, Liu SY, Lu W.
    J Neurosci; 2009 Jul 08; 29(27):8764-73. PubMed ID: 19587283
    [Abstract] [Full Text] [Related]

  • 18. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD).
    He Y, Kulasiri D, Samarasinghe S.
    J Theor Biol; 2016 Aug 21; 403():159-177. PubMed ID: 27185535
    [Abstract] [Full Text] [Related]

  • 19. Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice.
    Müller T, Albrecht D, Gebhardt C.
    Learn Mem; 2009 Jun 21; 16(6):395-405. PubMed ID: 19474217
    [Abstract] [Full Text] [Related]

  • 20. Experience-dependent modification of synaptic plasticity in visual cortex.
    Kirkwood A, Rioult MC, Bear MF.
    Nature; 1996 Jun 06; 381(6582):526-8. PubMed ID: 8632826
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.