These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
356 related items for PubMed ID: 189795
1. Magnetic resonance and kinetic studies of the role of the divalent cation activator of RNA polymerase from Escherichia coli. Koren R, Mildvan S. Biochemistry; 1977 Jan 25; 16(2):241-9. PubMed ID: 189795 [Abstract] [Full Text] [Related]
2. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM, Lee HC, Peisach J, Mildvan AS. Biochemistry; 2002 Apr 09; 41(14):4655-68. PubMed ID: 11926828 [Abstract] [Full Text] [Related]
3. Mandelate racemase from Pseudomonas putida. Magnetic resonance and kinetic studies of the mechanism of catalysis. Maggio ET, Kenyon GL, Mildvan AS, Hegeman GD. Biochemistry; 1975 Mar 25; 14(6):1131-9. PubMed ID: 164210 [Abstract] [Full Text] [Related]
4. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase. Grisham CM, Mildvan AS. J Supramol Struct; 1975 Mar 25; 3(3):304-13. PubMed ID: 171521 [Abstract] [Full Text] [Related]
5. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+. Conyers GB, Wu G, Bessman MJ, Mildvan AS. Biochemistry; 2000 Mar 07; 39(9):2347-54. PubMed ID: 10694402 [Abstract] [Full Text] [Related]
6. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions. Gupta RK, Oesterling RM. Biochemistry; 1976 Jun 29; 15(13):2881-7. PubMed ID: 7293 [Abstract] [Full Text] [Related]
7. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+. Hsu RY, Mildvan AS, Chang G, Fung C. J Biol Chem; 1976 Nov 10; 251(21):6574-83. PubMed ID: 988026 [Abstract] [Full Text] [Related]
8. Involvement of a divalent cation in the binding of fructose 6-phosphate to Trypanosoma cruzi phosphofructokinase: kinetic and magnetic resonance studies. Urbina JA, Ysern X, Mildvan AS. Arch Biochem Biophys; 1990 Apr 10; 278(1):187-94. PubMed ID: 2138869 [Abstract] [Full Text] [Related]
9. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine. Villafranca JJ, Ash DE, Wedler FC. Biochemistry; 1976 Feb 10; 15(3):544-53. PubMed ID: 3200 [Abstract] [Full Text] [Related]
10. Metal binding to DNA polymerase I, its large fragment, and two 3',5'-exonuclease mutants of the large fragment. Mullen GP, Serpersu EH, Ferrin LJ, Loeb LA, Mildvan AS. J Biol Chem; 1990 Aug 25; 265(24):14327-34. PubMed ID: 2201684 [Abstract] [Full Text] [Related]
11. Equilibrium and water proton relaxation rate enhancement properties of formyltetrahydrofolate synthetase-manganous ion-substrate complexes. Buttlaire DH, Reed GH, Himes RH. J Biol Chem; 1975 Jan 10; 250(1):254-60. PubMed ID: 166988 [Abstract] [Full Text] [Related]
12. Dual divalent cation requirement of the MutT dGTPase. Kinetic and magnetic resonance studies of the metal and substrate complexes. Frick DN, Weber DJ, Gillespie JR, Bessman MJ, Mildvan AS. J Biol Chem; 1994 Jan 21; 269(3):1794-803. PubMed ID: 8294428 [Abstract] [Full Text] [Related]
13. Magnetic resonance studies of the manganese guanosine di- and triphosphate complexes with elongation factor Tu. Wilson GE, Cohn M. J Biol Chem; 1977 Mar 25; 252(6):2004-9. PubMed ID: 191448 [Abstract] [Full Text] [Related]
14. Magnetic resonance studies on manganese-nucleotide complexes of phosphoglycerate kinase. Chapman BE, O'Sullivan WJ, Scopes RK, Reed GH. Biochemistry; 1977 Mar 08; 16(5):1005-10. PubMed ID: 321006 [Abstract] [Full Text] [Related]
15. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase. Stephens EM, Grisham CM. Biochemistry; 1979 Oct 30; 18(22):4876-85. PubMed ID: 228703 [Abstract] [Full Text] [Related]
16. Kinetic and magnetic resonance studies of active-site mutants of staphylococcal nuclease: factors contributing to catalysis. Serpersu EH, Shortle D, Mildvan AS. Biochemistry; 1987 Mar 10; 26(5):1289-300. PubMed ID: 3567171 [Abstract] [Full Text] [Related]
17. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Villafranca JJ, Ash DE, Wedler FC. Biochemistry; 1976 Feb 10; 15(3):536-43. PubMed ID: 766828 [Abstract] [Full Text] [Related]
18. Interactions of phospho- and dephosphosuccinyl coenzyme A synthetase with manganous ion and substrates. Studies of manganese complexes by NMR relaxation rates of water protons. Buttlaire DH, Chon M. J Biol Chem; 1977 Mar 25; 252(6):1957-64. PubMed ID: 321448 [Abstract] [Full Text] [Related]
19. Equilibrium substrate binding studies of the malic enzyme of pigeon liver. Equivalence of nucleotide sites and anticooperativity associated with the binding of L-malate to the enzyme-manganese(II)-reduced nicotinamide adenine dinucleotide phosphate ternary complex. Pry TA, Hsu RY. Biochemistry; 1980 Mar 04; 19(5):951-62. PubMed ID: 7356971 [Abstract] [Full Text] [Related]
20. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism. McLaughlin AC, Leigh JS, Cohn M. J Biol Chem; 1976 May 10; 251(9):2777-87. PubMed ID: 177421 [Abstract] [Full Text] [Related] Page: [Next] [New Search]