These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 18980650
1. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Engelhardt S, Lee J, Gäbler Y, Kemmerling B, Haapalainen ML, Li CM, Wei Z, Keller H, Joosten M, Taira S, Nürnberger T. Plant J; 2009 Feb; 57(4):706-17. PubMed ID: 18980650 [Abstract] [Full Text] [Related]
3. Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. Zhou H, Morgan RL, Guttman DS, Ma W. Mol Plant Microbe Interact; 2009 Feb; 22(2):176-89. PubMed ID: 19132870 [Abstract] [Full Text] [Related]
4. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts. Morgan RL, Zhou H, Lehto E, Nguyen N, Bains A, Wang X, Ma W. Mol Microbiol; 2010 Apr; 76(2):437-55. PubMed ID: 20233307 [Abstract] [Full Text] [Related]
5. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Underwood W, Zhang S, He SY. Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704 [Abstract] [Full Text] [Related]
6. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25. Vinatzer BA, Jelenska J, Greenberg JT. Mol Plant Microbe Interact; 2005 Aug; 18(8):877-88. PubMed ID: 16134900 [Abstract] [Full Text] [Related]
7. The Pseudomonas syringae effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Sohn KH, Zhang Y, Jones JD. Plant J; 2009 Mar; 57(6):1079-91. PubMed ID: 19054367 [Abstract] [Full Text] [Related]
8. Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, Arnold DL. Curr Biol; 2005 Dec 20; 15(24):2230-5. PubMed ID: 16360685 [Abstract] [Full Text] [Related]
9. The VirPphA/AvrPtoB family of type III effectors in Pseudomonas syringae. Oguiza JA, Asensio AC. Res Microbiol; 2005 Apr 20; 156(3):298-303. PubMed ID: 15808932 [Abstract] [Full Text] [Related]
10. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Nomura K, Melotto M, He SY. Curr Opin Plant Biol; 2005 Aug 20; 8(4):361-8. PubMed ID: 15936244 [Abstract] [Full Text] [Related]
12. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function. Nimchuk ZL, Fisher EJ, Desveaux D, Chang JH, Dangl JL. Mol Plant Microbe Interact; 2007 Apr 20; 20(4):346-57. PubMed ID: 17427805 [Abstract] [Full Text] [Related]
13. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR. Mol Plant Microbe Interact; 2008 Mar 20; 21(3):361-70. PubMed ID: 18257685 [Abstract] [Full Text] [Related]
14. Disabling surveillance: bacterial type III secretion system effectors that suppress innate immunity. Espinosa A, Alfano JR. Cell Microbiol; 2004 Nov 20; 6(11):1027-40. PubMed ID: 15469432 [Abstract] [Full Text] [Related]
20. The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells. Crabill E, Karpisek A, Alfano JR. Mol Microbiol; 2012 Jul 20; 85(2):225-38. PubMed ID: 22607547 [Abstract] [Full Text] [Related] Page: [Next] [New Search]