These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


529 related items for PubMed ID: 18983157

  • 1. In vitro digestion characteristics of unprocessed and processed whole grains and their components.
    Hernot DC, Boileau TW, Bauer LL, Swanson KS, Fahey GC.
    J Agric Food Chem; 2008 Nov 26; 56(22):10721-6. PubMed ID: 18983157
    [Abstract] [Full Text] [Related]

  • 2. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.
    Dust JM, Gajda AM, Flickinger EA, Burkhalter TM, Merchen NR, Fahey GC.
    J Agric Food Chem; 2004 May 19; 52(10):2989-96. PubMed ID: 15137844
    [Abstract] [Full Text] [Related]

  • 3. Chemical and physical characteristics of corn silages and their effects on in vitro disappearance.
    Ferreira G, Mertens DR.
    J Dairy Sci; 2005 Dec 19; 88(12):4414-25. PubMed ID: 16291633
    [Abstract] [Full Text] [Related]

  • 4. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model.
    Nordlund E, Aura AM, Mattila I, Kössö T, Rouau X, Poutanen K.
    J Agric Food Chem; 2012 Aug 22; 60(33):8134-45. PubMed ID: 22731123
    [Abstract] [Full Text] [Related]

  • 5. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles.
    Rose DJ, Patterson JA, Hamaker BR.
    J Agric Food Chem; 2010 Jan 13; 58(1):493-9. PubMed ID: 20000566
    [Abstract] [Full Text] [Related]

  • 6. Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs.
    Cervantes-Pahm SK, Liu Y, Stein HH.
    J Sci Food Agric; 2014 Mar 30; 94(5):841-9. PubMed ID: 23893839
    [Abstract] [Full Text] [Related]

  • 7. Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis.
    Piperno DR, Weiss E, Holst I, Nadel D.
    Nature; 2004 Aug 05; 430(7000):670-3. PubMed ID: 15295598
    [Abstract] [Full Text] [Related]

  • 8. Enzymatic method for measuring starch gelatinization in dry products in situ.
    Liu K, Han J.
    J Agric Food Chem; 2012 May 02; 60(17):4212-21. PubMed ID: 22401143
    [Abstract] [Full Text] [Related]

  • 9. Effect of process on physicochemical properties of oat bran soluble dietary fiber.
    Zhang M, Liang Y, Pei Y, Gao W, Zhang Z.
    J Food Sci; 2009 Oct 02; 74(8):C628-36. PubMed ID: 19799659
    [Abstract] [Full Text] [Related]

  • 10. In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes.
    Connolly ML, Lovegrove JA, Tuohy KM.
    Anaerobe; 2010 Oct 02; 16(5):483-8. PubMed ID: 20624475
    [Abstract] [Full Text] [Related]

  • 11. Anthocyanin composition in black, blue, pink, purple, and red cereal grains.
    Abdel-Aal el-SM, Young JC, Rabalski I.
    J Agric Food Chem; 2006 Jun 28; 54(13):4696-704. PubMed ID: 16787017
    [Abstract] [Full Text] [Related]

  • 12. Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: a comparative study between in vivo and in vitro.
    Soong YY, Quek RY, Henry CJ.
    Eur J Nutr; 2015 Dec 28; 54(8):1281-5. PubMed ID: 25637395
    [Abstract] [Full Text] [Related]

  • 13. APPLICATION OF OAT, WHEAT AND RYE BRAN TO MODIFY NUTRITIONAL PROPERTIES, PHYSICAL AND SENSORY CHARACTERISTICS OF EXTRUDED CORN SNACKS.
    Makowska A, Polcyn A, Chudy S, Michniewicz J.
    Acta Sci Pol Technol Aliment; 2015 Dec 28; 14(4):375-386. PubMed ID: 28068043
    [Abstract] [Full Text] [Related]

  • 14. Digestibility of carbohydrates from rice-, oat- and wheat-based ready-to-eat breakfast cereals in children.
    Brighenti F, Casiraghi MC, Ciappellano S, Crovetti R, Testolin G.
    Eur J Clin Nutr; 1994 Sep 28; 48(9):617-24. PubMed ID: 8001518
    [Abstract] [Full Text] [Related]

  • 15. Production and in vitro fermentation of soluble, non-digestible, feruloylated oligo- and polysaccharides from maize and wheat brans.
    Yang J, Maldonado-Gómez MX, Hutkins RW, Rose DJ.
    J Agric Food Chem; 2014 Jan 08; 62(1):159-66. PubMed ID: 24359228
    [Abstract] [Full Text] [Related]

  • 16. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model.
    Bednar GE, Patil AR, Murray SM, Grieshop CM, Merchen NR, Fahey GC.
    J Nutr; 2001 Feb 08; 131(2):276-86. PubMed ID: 11160546
    [Abstract] [Full Text] [Related]

  • 17. Chemical composition, in vitro fermentation characteristics, and in vivo digestibility responses by dogs to select corn fibers.
    Guevara MA, Bauer LL, Abbas CA, Beery KE, Holzgraefe DP, Cecava MJ, Fahey GC.
    J Agric Food Chem; 2008 Mar 12; 56(5):1619-26. PubMed ID: 18275146
    [Abstract] [Full Text] [Related]

  • 18. Whole-Grain Starch and Fiber Composition Modifies Ileal Flow of Nutrients and Nutrient Availability in the Hindgut, Shifting Fecal Microbial Profiles in Pigs.
    Fouhse JM, Gänzle MG, Beattie AD, Vasanthan T, Zijlstra RT.
    J Nutr; 2017 Nov 12; 147(11):2031-2040. PubMed ID: 28954838
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products.
    Nogala-Kałucka M, Kawka A, Dwiecki K, Siger A.
    Acta Sci Pol Technol Aliment; 2020 Nov 12; 19(4):405-423. PubMed ID: 33179481
    [Abstract] [Full Text] [Related]

  • 20. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels.
    Ndolo VU, Beta T.
    Food Chem; 2013 Aug 15; 139(1-4):663-71. PubMed ID: 23561159
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.