These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 18984566

  • 21. Modulation of different behavioral components by neuropeptide and dopamine signalings in non-associative odor learning of Caenorhabditis elegans.
    Yamazoe-Umemoto A, Fujita K, Iino Y, Iwasaki Y, Kimura KD.
    Neurosci Res; 2015 Oct; 99():22-33. PubMed ID: 26068898
    [Abstract] [Full Text] [Related]

  • 22. C. elegans positive butanone learning, short-term, and long-term associative memory assays.
    Kauffman A, Parsons L, Stein G, Wills A, Kaletsky R, Murphy C.
    J Vis Exp; 2011 Mar 11; (49):. PubMed ID: 21445035
    [Abstract] [Full Text] [Related]

  • 23. Odour concentration-dependent olfactory preference change in C. elegans.
    Yoshida K, Hirotsu T, Tagawa T, Oda S, Wakabayashi T, Iino Y, Ishihara T.
    Nat Commun; 2012 Mar 13; 3():739. PubMed ID: 22415830
    [Abstract] [Full Text] [Related]

  • 24. Gustatory plasticity in C. elegans involves integration of negative cues and NaCl taste mediated by serotonin, dopamine, and glutamate.
    Hukema RK, Rademakers S, Jansen G.
    Learn Mem; 2008 Nov 13; 15(11):829-36. PubMed ID: 18984564
    [Abstract] [Full Text] [Related]

  • 25. The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons.
    Roayaie K, Crump JG, Sagasti A, Bargmann CI.
    Neuron; 1998 Jan 13; 20(1):55-67. PubMed ID: 9459442
    [Abstract] [Full Text] [Related]

  • 26. State-dependency in C. elegans.
    Bettinger JC, McIntire SL.
    Genes Brain Behav; 2004 Oct 13; 3(5):266-72. PubMed ID: 15344920
    [Abstract] [Full Text] [Related]

  • 27. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans.
    Troemel ER, Kimmel BE, Bargmann CI.
    Cell; 1997 Oct 17; 91(2):161-9. PubMed ID: 9346234
    [Abstract] [Full Text] [Related]

  • 28. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15.
    Sellings L, Pereira S, Qian C, Dixon-McDougall T, Nowak C, Zhao B, Tyndale RF, van der Kooy D.
    Eur J Neurosci; 2013 Mar 17; 37(5):743-56. PubMed ID: 23351035
    [Abstract] [Full Text] [Related]

  • 29. Identification of Odor Blend Used by Caenorhabditis elegans for Pathogen Recognition.
    Worthy SE, Rojas GL, Taylor CJ, Glater EE.
    Chem Senses; 2018 Feb 26; 43(3):169-180. PubMed ID: 29373666
    [Abstract] [Full Text] [Related]

  • 30. An interneuronal chemoreceptor required for olfactory imprinting in C. elegans.
    Remy JJ, Hobert O.
    Science; 2005 Jul 29; 309(5735):787-90. PubMed ID: 16051801
    [Abstract] [Full Text] [Related]

  • 31. Olfactory associative learning in Caenorhabditis elegans is impaired in lrn-1 and lrn-2 mutants.
    Morrison GE, Wen JY, Runciman S, van der Kooy D.
    Behav Neurosci; 1999 Apr 29; 113(2):358-67. PubMed ID: 10357460
    [Abstract] [Full Text] [Related]

  • 32. Sensory interaction between attractant diacetyl and repellent 2-nonanone in the nematode Caenorhabditis elegans.
    Matsuura T, Izumi J, Hioki M, Nagaya H, Kobayashi Y.
    J Exp Zool A Ecol Genet Physiol; 2013 Jun 29; 319(5):285-95. PubMed ID: 23580469
    [Abstract] [Full Text] [Related]

  • 33. A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans: adaptation and habituation.
    Bernhard N, van der Kooy D.
    Learn Mem; 2000 Jun 29; 7(4):199-212. PubMed ID: 10940320
    [Abstract] [Full Text] [Related]

  • 34. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons.
    Wes PD, Bargmann CI.
    Nature; 2001 Apr 05; 410(6829):698-701. PubMed ID: 11287957
    [Abstract] [Full Text] [Related]

  • 35. Retention time of attenuated response to diacetyl after pre-exposure to diacetyl in Caenorhabditis elegans.
    Matsuura T, Suzuki S, Musashino A, Kanno R, Ichinose M.
    J Exp Zool A Ecol Genet Physiol; 2009 Aug 01; 311(7):483-95. PubMed ID: 19415716
    [Abstract] [Full Text] [Related]

  • 36. A single sensory neuron directs both attractive and repulsive odor preferences.
    Mori I.
    Neuron; 2008 Sep 25; 59(6):839-40. PubMed ID: 18817723
    [Abstract] [Full Text] [Related]

  • 37. Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans.
    Ooi FK, Prahlad V.
    Sci Signal; 2017 Oct 17; 10(501):. PubMed ID: 29042483
    [Abstract] [Full Text] [Related]

  • 38. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans.
    Sassa T, Murayama T, Maruyama IN.
    Neurosci Lett; 2013 Oct 25; 555():248-52. PubMed ID: 23769685
    [Abstract] [Full Text] [Related]

  • 39. Host-microbe interactions and the behavior of Caenorhabditis elegans.
    Kim DH, Flavell SW.
    J Neurogenet; 2020 Oct 25; 34(3-4):500-509. PubMed ID: 32781873
    [Abstract] [Full Text] [Related]

  • 40. Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone.
    Torayama I, Ishihara T, Katsura I.
    J Neurosci; 2007 Jan 24; 27(4):741-50. PubMed ID: 17251413
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.