These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The effect of cyclic nucleotides and protein phosphorylation on calcium permeability and binding in the sarcoplasmic reticulum. Weller M, Laing W. Biochim Biophys Acta; 1979 Mar 08; 551(2):406-19. PubMed ID: 217433 [Abstract] [Full Text] [Related]
4. A comparison of Ca++ incorporation in microsomal fractions from bovine, canine and rabbit aortic smooth muscle. Kutsky P, Weiss GB. Arch Int Pharmacodyn Ther; 1982 Dec 08; 260(2):196-205. PubMed ID: 7165426 [Abstract] [Full Text] [Related]
5. Effects of angiotensin, catecholamines and cyclic AMP on calcium storage in aortic microsomes. Baudouin-Legros M, Meyer P. Br J Pharmacol; 1973 Feb 08; 47(2):377-85. PubMed ID: 4352869 [Abstract] [Full Text] [Related]
6. The influence of ouabain and alpha angelica lactone on calcium metabolism of dog cardiac microsomes. Entman ML, Cook JW, Bressler R. J Clin Invest; 1969 Feb 08; 48(2):229-34. PubMed ID: 4236805 [Abstract] [Full Text] [Related]
7. Stimulation of calcium uptake into aortic microsomes by cyclic AMP and cyclic AMP-dependent protein kinase. Fitzpatrick DF, Szentivanyi A. Naunyn Schmiedebergs Arch Pharmacol; 1977 Jul 08; 298(3):255-7. PubMed ID: 197433 [Abstract] [Full Text] [Related]
10. Differences in calcium uptake in native canine cardiac microsomes are correlated with the ratio of unphosphorylated to phosphorylated phospholamban as determined by Western blot analysis. Kasinathan C, Xu ZC, Kirchberger MA. Biochem Biophys Res Commun; 1988 Dec 30; 157(3):1296-301. PubMed ID: 2849936 [Abstract] [Full Text] [Related]
11. Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake. Bhalla RC, Webb RC, Singh D, Brock T. Am J Physiol; 1978 May 30; 234(5):H508-14. PubMed ID: 206157 [Abstract] [Full Text] [Related]
12. Endogenous phosphorylation of microsomal proteins in bovine corpus luteum. Tenfold activation by adenosine 3':5'-cyclic monophosphate. Hardie DG, Stansfield DA. Biochem J; 1977 Apr 15; 164(1):213-21. PubMed ID: 195580 [Abstract] [Full Text] [Related]
13. Calcium incorporation by canine aortic smooth muscle microsomes. Kutsky P, Goodman FR. Arch Int Pharmacodyn Ther; 1978 Jan 15; 231(1):4-20. PubMed ID: 637623 [Abstract] [Full Text] [Related]
14. Calcium-binding sites and calcium uptake in cardiac microsomes: effects of varying Ca++ concentration, and of an adenosine-3',5'- monophosphate-dependent protein kinase. Katz AM, Repke DI, Kirchberger MA, Tada M. Recent Adv Stud Cardiac Struct Metab; 1974 Jan 15; 4():427-36. PubMed ID: 4377615 [No Abstract] [Full Text] [Related]
15. Mechanism of action of epinephrine and glucagon on the canine heart. Evidence for increase in sarcotubular calcium stores mediated by cyclic 3',5'-AMP. Entman ML, Levey GS, Epstein SE. Circ Res; 1969 Oct 15; 25(4):429-38. PubMed ID: 4310439 [No Abstract] [Full Text] [Related]
16. ATP-dependent Ca uptake of brain microsomes. Otsuki I. J Biochem; 1969 Nov 15; 66(5):645-50. PubMed ID: 4243336 [No Abstract] [Full Text] [Related]
18. Effects of adenosine 3' : 5'-monophosphate and guanosine 3' : 5'-monophosphate on calcium uptake and phosphorylation in membrane fractions of vascular smooth muscle. Thorens S, Haeusler G. Biochim Biophys Acta; 1978 Sep 22; 512(2):415-28. PubMed ID: 213115 [Abstract] [Full Text] [Related]
19. Effects of cyclic AMP and protein kinase on calcium uptake in a microsomal fraction from guinea pig taenia caecum. Hisayama T, Takayanagi I. Biochem Pharmacol; 1983 Nov 01; 32(21):3197-203. PubMed ID: 6315021 [Abstract] [Full Text] [Related]
20. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle. Sands H, Mascali J, Paietta E. Biochim Biophys Acta; 1977 Dec 22; 500(2):223-34. PubMed ID: 201293 [Abstract] [Full Text] [Related] Page: [Next] [New Search]