These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
118 related items for PubMed ID: 18990466
1. Simulating the injection of micellar solutions to recover diesel in a sand column. Bernardez LA, Therrien R, Lefebvre R, Martel R. J Contam Hydrol; 2009 Jan 26; 103(3-4):99-108. PubMed ID: 18990466 [Abstract] [Full Text] [Related]
2. TCE recovery mechanisms using micellar and alcohol solutions: phase diagrams and sand column experiments. St-Pierre C, Martel R, Gabriel U, Lefebvre R, Robert T, Hawari J. J Contam Hydrol; 2004 Jul 26; 71(1-4):155-92. PubMed ID: 15145566 [Abstract] [Full Text] [Related]
3. Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model. Robert T, Martel R, Conrad SH, Lefebvre R, Gabriel U. J Contam Hydrol; 2006 Jun 30; 86(1-2):3-31. PubMed ID: 16624443 [Abstract] [Full Text] [Related]
4. Effects of ethanol addition on micellar solubilization and plume migration during surfactant enhanced recovery of tetrachloroethene. Taylor TP, Rathfelder KM, Pennell KD, Abriola LM. J Contam Hydrol; 2004 Mar 30; 69(1-2):73-99. PubMed ID: 14972438 [Abstract] [Full Text] [Related]
5. Improving the extraction of tetrachloroethylene from soil columns using surfactant gradient systems. Childs JD, Acosta E, Knox R, Harwell JH, Sabatini DA. J Contam Hydrol; 2004 Jul 30; 71(1-4):27-45. PubMed ID: 15145560 [Abstract] [Full Text] [Related]
6. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern. Martel R, Hébert A, Lefebvre R, Gélinas P, Gabriel U. J Contam Hydrol; 2004 Nov 30; 75(1-2):1-29. PubMed ID: 15385096 [Abstract] [Full Text] [Related]
7. Kinetic micellar effects in tetradecyltrimethylammonium bromide-pentanol micellar solutions. Rodríguez A, Múñoz M, Graciani Mdel M, Moyá ML. J Colloid Interface Sci; 2002 Apr 15; 248(2):455-61. PubMed ID: 16290550 [Abstract] [Full Text] [Related]
8. Characterization and removal of DNAPL from sand and clay layered media. Hayden N, Diebold J, Farrell C, Laible J, Stacey R. J Contam Hydrol; 2006 Jun 30; 86(1-2):53-71. PubMed ID: 16580089 [Abstract] [Full Text] [Related]
9. Remediation of sandy soils using surfactant solutions and foams. Couto HJ, Massarani G, Biscaia EC, Sant'Anna GL. J Hazard Mater; 2009 May 30; 164(2-3):1325-34. PubMed ID: 19081185 [Abstract] [Full Text] [Related]
10. Removal of PCB-DNAPL from a rough-walled fracture using alcohol/polymer flooding. Gauthier M, Kueper BH. J Contam Hydrol; 2006 Mar 01; 84(1-2):1-20. PubMed ID: 16442183 [Abstract] [Full Text] [Related]
11. Comparison of titania, zirconia, and silica stationary phases for separating diesel fuels according to hydrocarbon group-type by supercritical fluid chromatography. Paproski RE, Cooley J, Lucy CA. J Chromatogr A; 2005 Nov 18; 1095(1-2):156-63. PubMed ID: 16275296 [Abstract] [Full Text] [Related]
12. Viscoelastic wormlike micelles in mixed nonionic fluorocarbon surfactants and structural transition induced by oils. Sharma SC, Shrestha RG, Shrestha LK, Aramaki K. J Phys Chem B; 2009 Feb 12; 113(6):1615-22. PubMed ID: 19193166 [Abstract] [Full Text] [Related]
13. A partially coupled, fraction-by-fraction modelling approach to the subsurface migration of gasoline spills. Fagerlund F, Niemi A. J Contam Hydrol; 2007 Jan 30; 89(3-4):174-98. PubMed ID: 17014926 [Abstract] [Full Text] [Related]
14. Simulating the evolution of an ethanol and gasoline source zone within the capillary fringe. Yu S, Freitas JG, Unger AJ, Barker JF, Chatzis J. J Contam Hydrol; 2009 Feb 27; 105(1-2):1-17. PubMed ID: 19110339 [Abstract] [Full Text] [Related]
15. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands. Lekmine G, Sookhak Lari K, Johnston CD, Bastow TP, Rayner JL, Davis GB. J Contam Hydrol; 2017 Jan 27; 196():30-42. PubMed ID: 27979461 [Abstract] [Full Text] [Related]
16. [Impact of depth and moisture to diesel degradation in sand layer of vadose zone]. Wang B, Zhao YS, Qu ZH, Zheng W, Zhu W, Long BS, Jiao LN, Xu C. Huan Jing Ke Xue; 2011 Feb 27; 32(2):530-5. PubMed ID: 21528579 [Abstract] [Full Text] [Related]
17. Remediation of oil-contaminated sand with self-collapsing air microbubbles. Agarwal A, Zhou Y, Liu Y. Environ Sci Pollut Res Int; 2016 Dec 27; 23(23):23876-23883. PubMed ID: 27628704 [Abstract] [Full Text] [Related]
18. Study on diesel vertical migration characteristics and mechanism in water-bearing sand stratum using an automated resistivity monitoring system. Pan Y, Jia Y, Wang Y, Xia X, Guo L. Environ Sci Pollut Res Int; 2018 Feb 27; 25(4):3802-3812. PubMed ID: 29177997 [Abstract] [Full Text] [Related]
19. Influence of alcohol cosurfactants on surfactant-enhanced flushing of diesel-contaminated soil. Kim JS, Lee K. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Feb 27; 37(6):1051-62. PubMed ID: 12090279 [Abstract] [Full Text] [Related]
20. Humic acid enhanced remediation of an emplaced diesel source in groundwater. 2. Numerical model development and application. Molson JW, Frind EO, Van Stempvoort DR, Lesage S. J Contam Hydrol; 2002 Feb 27; 54(3-4):277-305. PubMed ID: 11902159 [Abstract] [Full Text] [Related] Page: [Next] [New Search]