These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 1899140
1. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase. Peterson CB, Schachman HK. Proc Natl Acad Sci U S A; 1991 Jan 15; 88(2):458-62. PubMed ID: 1899140 [Abstract] [Full Text] [Related]
2. Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains. Yang YR, Schachman HK. Proc Natl Acad Sci U S A; 1993 Dec 15; 90(24):11980-4. PubMed ID: 8265657 [Abstract] [Full Text] [Related]
6. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains. Eisenstein E, Markby DW, Schachman HK. Proc Natl Acad Sci U S A; 1989 May 15; 86(9):3094-8. PubMed ID: 2566165 [Abstract] [Full Text] [Related]
7. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains. Yang YR, Schachman HK. Protein Sci; 1993 Jun 15; 2(6):1013-23. PubMed ID: 8318886 [Abstract] [Full Text] [Related]
8. In vivo formation of allosteric aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains: implications for protein folding and assembly. Zhang P, Schachman HK. Protein Sci; 1996 Jul 15; 5(7):1290-300. PubMed ID: 8819162 [Abstract] [Full Text] [Related]
9. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Wente SR, Schachman HK. Proc Natl Acad Sci U S A; 1987 Jan 15; 84(1):31-5. PubMed ID: 3540957 [Abstract] [Full Text] [Related]
11. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains. Powers VM, Yang YR, Fogli MJ, Schachman HK. Protein Sci; 1993 Jun 15; 2(6):1001-12. PubMed ID: 8318885 [Abstract] [Full Text] [Related]
12. Endogenous polypeptide-chain length and partial sequence of aspartate transcarbamoylase from wheat, characterised by immunochemical and cDNA methods. Bartlett TJ, Aibangbee A, Bruce IJ, Donovan PJ, Yon RJ. Biochim Biophys Acta; 1994 Aug 17; 1207(2):187-93. PubMed ID: 8075153 [Abstract] [Full Text] [Related]
14. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E, Han MS, Woo TS, Ritchey JM, Gibbons I, Yang YR, Schachman HK. J Biol Chem; 1992 Nov 05; 267(31):22148-55. PubMed ID: 1429567 [Abstract] [Full Text] [Related]
16. The conserved residues glutamate-37, aspartate-100, and arginine-269 are important for the structural stabilization of Escherichia coli aspartate transcarbamoylase. Baker DP, Kantrowitz ER. Biochemistry; 1993 Sep 28; 32(38):10150-8. PubMed ID: 8104480 [Abstract] [Full Text] [Related]
18. Random circular permutation of genes and expressed polypeptide chains: application of the method to the catalytic chains of aspartate transcarbamoylase. Graf R, Schachman HK. Proc Natl Acad Sci U S A; 1996 Oct 15; 93(21):11591-6. PubMed ID: 8876180 [Abstract] [Full Text] [Related]