These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


211 related items for PubMed ID: 18991438

  • 1. Computation of the contribution from the cavity effect to protein-ligand binding free energy.
    Grigoriev FV, Gabin SN, Romanov AN, Sulimov VB.
    J Phys Chem B; 2008 Dec 04; 112(48):15355-60. PubMed ID: 18991438
    [Abstract] [Full Text] [Related]

  • 2. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY, Chu ZT, Tao H, Warshel A.
    Proteins; 2000 Jun 01; 39(4):393-407. PubMed ID: 10813821
    [Abstract] [Full Text] [Related]

  • 3. Hydration energy landscape of the active site cavity in cytochrome P450cam.
    Helms V, Wade RC.
    Proteins; 1998 Aug 15; 32(3):381-96. PubMed ID: 9715913
    [Abstract] [Full Text] [Related]

  • 4. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method.
    Hamelberg D, McCammon JA.
    J Am Chem Soc; 2004 Jun 23; 126(24):7683-9. PubMed ID: 15198616
    [Abstract] [Full Text] [Related]

  • 5. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF, Di Lella S, Guardia CM, Estrin DA, Martí MA.
    J Phys Chem B; 2009 Jun 25; 113(25):8717-24. PubMed ID: 19485380
    [Abstract] [Full Text] [Related]

  • 6. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.
    Woods CJ, Malaisree M, Hannongbua S, Mulholland AJ.
    J Chem Phys; 2011 Feb 07; 134(5):054114. PubMed ID: 21303099
    [Abstract] [Full Text] [Related]

  • 7. Classification of water molecules in protein binding sites.
    Barillari C, Taylor J, Viner R, Essex JW.
    J Am Chem Soc; 2007 Mar 07; 129(9):2577-87. PubMed ID: 17288418
    [Abstract] [Full Text] [Related]

  • 8. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L, Liang S, Pilcher MM, Meroueh SO.
    Protein Eng Des Sel; 2009 Sep 07; 22(9):575-86. PubMed ID: 19643976
    [Abstract] [Full Text] [Related]

  • 9. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y, Yang CY, Wang S.
    J Am Chem Soc; 2006 Sep 13; 128(36):11830-9. PubMed ID: 16953623
    [Abstract] [Full Text] [Related]

  • 10. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space.
    Naïm M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, Jakalian A, Purisima EO.
    J Chem Inf Model; 2007 Sep 13; 47(1):122-33. PubMed ID: 17238257
    [Abstract] [Full Text] [Related]

  • 11. PEARLS: program for energetic analysis of receptor-ligand system.
    Han LY, Lin HH, Li ZR, Zheng CJ, Cao ZW, Xie B, Chen YZ.
    J Chem Inf Model; 2006 Sep 13; 46(1):445-50. PubMed ID: 16426079
    [Abstract] [Full Text] [Related]

  • 12. Fully automated molecular mechanics based induced fit protein-ligand docking method.
    Koska J, Spassov VZ, Maynard AJ, Yan L, Austin N, Flook PK, Venkatachalam CM.
    J Chem Inf Model; 2008 Oct 13; 48(10):1965-73. PubMed ID: 18816046
    [Abstract] [Full Text] [Related]

  • 13. The effect of water displacement on binding thermodynamics: concanavalin A.
    Li Z, Lazaridis T.
    J Phys Chem B; 2005 Jan 13; 109(1):662-70. PubMed ID: 16851059
    [Abstract] [Full Text] [Related]

  • 14. Grand canonical free-energy calculations of protein-ligand binding.
    Clark M, Meshkat S, Wiseman JS.
    J Chem Inf Model; 2009 Apr 13; 49(4):934-43. PubMed ID: 19309088
    [Abstract] [Full Text] [Related]

  • 15. Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding.
    Tirado-Rives J, Jorgensen WL.
    J Med Chem; 2006 Oct 05; 49(20):5880-4. PubMed ID: 17004703
    [Abstract] [Full Text] [Related]

  • 16. Dynamic ligand design and combinatorial optimization: designing inhibitors to endothiapepsin.
    Stultz CM, Karplus M.
    Proteins; 2000 Aug 01; 40(2):258-89. PubMed ID: 10842341
    [Abstract] [Full Text] [Related]

  • 17. The particle concept: placing discrete water molecules during protein-ligand docking predictions.
    Rarey M, Kramer B, Lengauer T.
    Proteins; 1999 Jan 01; 34(1):17-28. PubMed ID: 10336380
    [Abstract] [Full Text] [Related]

  • 18. Cavitation free energy for organic molecules having various sizes and shapes.
    Grigoriev FV, Basilevsky MV, Gabin SN, Romanov AN, Sulimov VB.
    J Phys Chem B; 2007 Dec 13; 111(49):13748-55. PubMed ID: 18020442
    [Abstract] [Full Text] [Related]

  • 19. Protein-ligand binding free energy calculation by the Smooth Reaction Path Generation (SRPG) Method.
    Fukunishi Y, Mitomo D, Nakamura H.
    J Chem Inf Model; 2009 Aug 13; 49(8):1944-51. PubMed ID: 19807195
    [Abstract] [Full Text] [Related]

  • 20. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A.
    J Mol Biol; 2006 Apr 21; 358(1):289-309. PubMed ID: 16497327
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.