These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
309 related items for PubMed ID: 19000632
21. Physiological and biochemical responses of rice (Oryza sativa L.) to phenanthrene and pyrene. Li JH, Gao Y, Wu SC, Cheung KC, Wang XR, Wong MH. Int J Phytoremediation; 2008; 10(2):104-16. PubMed ID: 18709924 [Abstract] [Full Text] [Related]
22. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere. Shrestha B, Anderson TA, Acosta-Martinez V, Payton P, Cañas-Carrell JE. Ecotoxicol Environ Saf; 2015 Jun; 116():143-9. PubMed ID: 25800986 [Abstract] [Full Text] [Related]
23. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.). Xu SY, Chen YX, Lin Q, Wu WX, Xue SG, Shen CF. J Environ Sci (China); 2005 Jun; 17(5):817-22. PubMed ID: 16313010 [Abstract] [Full Text] [Related]
24. Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. Zhang X, Liu X, Liu S, Liu F, Chen L, Xu G, Zhong C, Su P, Cao Z. J Hazard Mater; 2011 Oct 15; 193():45-51. PubMed ID: 21899948 [Abstract] [Full Text] [Related]
25. Plant--rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Muratova A, Hūbner T, Tischer S, Turkovskaya O, Möder M, Kuschk P. Int J Phytoremediation; 2003 Oct 15; 5(2):137-51. PubMed ID: 12929496 [Abstract] [Full Text] [Related]
26. Acute effects of PAH contamination on microbial community of different forest soils. Picariello E, Baldantoni D, De Nicola F. Environ Pollut; 2020 Jul 15; 262():114378. PubMed ID: 32443209 [Abstract] [Full Text] [Related]
27. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Liu R, Xiao N, Wei S, Zhao L, An J. Sci Total Environ; 2014 Mar 01; 473-474():350-8. PubMed ID: 24374595 [Abstract] [Full Text] [Related]
28. Rice husk and its derived biochar assist phytoremediation of heavy metals and PAHs co-contaminated soils but differently affect bacterial community. Shang X, Wu S, Liu Y, Zhang K, Guo M, Zhou Y, Zhu J, Li X, Miao R. J Hazard Mater; 2024 Mar 15; 466():133684. PubMed ID: 38310844 [Abstract] [Full Text] [Related]
29. Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil. Yang W, Zhang T, Lin S, Ni W. Environ Sci Pollut Res Int; 2017 Jun 15; 24(16):14234-14248. PubMed ID: 28421524 [Abstract] [Full Text] [Related]
30. Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization. Ni N, Wang F, Song Y, Bian Y, Shi R, Yang X, Gu C, Jiang X. Chemosphere; 2018 Apr 15; 196():288-296. PubMed ID: 29306781 [Abstract] [Full Text] [Related]
31. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants. Bourceret A, Leyval C, de Fouquet C, Cébron A. PLoS One; 2015 Apr 15; 10(11):e0142851. PubMed ID: 26599438 [Abstract] [Full Text] [Related]
32. Spatial covariation of microbial community composition and polycyclic aromatic hydrocarbon concentration in a creosote-polluted soil. Törneman N, Yang X, Bååth E, Bengtsson G. Environ Toxicol Chem; 2008 May 15; 27(5):1039-46. PubMed ID: 18419193 [Abstract] [Full Text] [Related]
33. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. Kim MC, Ahn JH, Shin HC, Kim T, Ryu TH, Kim DH, Song HG, Lee GH, Ka JO. J Microbiol Biotechnol; 2008 Feb 15; 18(2):207-18. PubMed ID: 18309263 [Abstract] [Full Text] [Related]
34. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil. Gao Y, Yu XZ, Wu SC, Cheung KC, Tam NF, Qian PY, Wong MH. Sci Total Environ; 2006 Dec 15; 372(1):1-11. PubMed ID: 17081596 [Abstract] [Full Text] [Related]
35. Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: A mechanism study. Ni N, Song Y, Shi R, Liu Z, Bian Y, Wang F, Yang X, Gu C, Jiang X. Sci Total Environ; 2017 Dec 01; 601-602():1015-1023. PubMed ID: 28586746 [Abstract] [Full Text] [Related]
36. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Ma B, He Y, Chen HH, Xu JM, Rengel Z. Environ Pollut; 2010 Mar 01; 158(3):855-61. PubMed ID: 19854547 [Abstract] [Full Text] [Related]
37. Temporal dynamics of the compositions and activities of soil microbial communities post-application of the insecticide chlorantraniliprole in paddy soils. Wu M, Liu J, Li W, Liu M, Jiang C, Li Z. Ecotoxicol Environ Saf; 2017 Oct 01; 144():409-415. PubMed ID: 28651190 [Abstract] [Full Text] [Related]
38. [Distribution characteristics and sources identification of PAHs in ancient paddy soil]. Li JH, Dong YH, Cao ZH, Wang H, An Q, Hu ZY, Yang LZ, Lin XG, Yin R. Huan Jing Ke Xue; 2006 Jun 01; 27(6):1235-9. PubMed ID: 16921968 [Abstract] [Full Text] [Related]
39. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Lee SH, Lee WS, Lee CH, Kim JG. J Hazard Mater; 2008 May 01; 153(1-2):892-8. PubMed ID: 17959304 [Abstract] [Full Text] [Related]
40. Uptake of Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) by Oryza sativa L. Grown in Soil Contaminated with Crude Oil. Patowary R, Patowary K, Devi A, Kalita MC, Deka S. Bull Environ Contam Toxicol; 2017 Jan 01; 98(1):120-126. PubMed ID: 27896384 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]