These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
565 related items for PubMed ID: 19000739
1. Brain-computer interface: changes in performance using virtual reality techniques. Ron-Angevin R, Díaz-Estrella A. Neurosci Lett; 2009 Jan 09; 449(2):123-7. PubMed ID: 19000739 [Abstract] [Full Text] [Related]
2. How many people are able to operate an EEG-based brain-computer interface (BCI)? Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. IEEE Trans Neural Syst Rehabil Eng; 2003 Jun 09; 11(2):145-7. PubMed ID: 12899258 [Abstract] [Full Text] [Related]
3. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R, Scherer R, Keinrath C, Guger C, Pfurtscheller G. Biomed Tech (Berl); 2005 Apr 09; 50(4):86-91. PubMed ID: 15884704 [Abstract] [Full Text] [Related]
4. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G. Neuroimage; 2007 Aug 15; 37(2):539-50. PubMed ID: 17475513 [Abstract] [Full Text] [Related]
7. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. Trejo LJ, Rosipal R, Matthews B. IEEE Trans Neural Syst Rehabil Eng; 2006 Jun 15; 14(2):225-9. PubMed ID: 16792300 [Abstract] [Full Text] [Related]
8. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Clin Neurophysiol; 2009 Feb 15; 120(2):239-47. PubMed ID: 19121977 [Abstract] [Full Text] [Related]
9. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network. Hazrati MKh, Erfanian A. Med Eng Phys; 2010 Sep 15; 32(7):730-9. PubMed ID: 20510641 [Abstract] [Full Text] [Related]
11. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Hwang HJ, Kwon K, Im CH. J Neurosci Methods; 2009 Apr 30; 179(1):150-6. PubMed ID: 19428521 [Abstract] [Full Text] [Related]
12. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G. J Neural Eng; 2010 Apr 30; 7(2):26007. PubMed ID: 20332550 [Abstract] [Full Text] [Related]
13. Self-initiation of EEG-based brain-computer communication using the heart rate response. Scherer R, Müller-Putz GR, Pfurtscheller G. J Neural Eng; 2007 Dec 30; 4(4):L23-9. PubMed ID: 18057501 [Abstract] [Full Text] [Related]
14. The Berlin Brain-Computer Interface: EEG-based communication without subject training. Blankertz B, Dornhege G, Krauledat M, Müller KR, Kunzmann V, Losch F, Curio G. IEEE Trans Neural Syst Rehabil Eng; 2006 Jun 30; 14(2):147-52. PubMed ID: 16792281 [Abstract] [Full Text] [Related]
15. How many people are able to control a P300-based brain-computer interface (BCI)? Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G. Neurosci Lett; 2009 Oct 02; 462(1):94-8. PubMed ID: 19545601 [Abstract] [Full Text] [Related]